001 | 151447 | ||
005 | 20210129213505.0 | ||
024 | 7 | _ | |a 10.1021/cg500054w |2 doi |
024 | 7 | _ | |a 1528-7505 |2 ISSN |
024 | 7 | _ | |a 1528-7483 |2 ISSN |
024 | 7 | _ | |a WOS:000332684400069 |2 WOS |
037 | _ | _ | |a FZJ-2014-01393 |
041 | _ | _ | |a English |
082 | _ | _ | |a 540 |
100 | 1 | _ | |a Tessarek, C. |0 P:(DE-HGF)0 |b 0 |e Corresponding author |
245 | _ | _ | |a The Role of Si during the Growth of GaN Micro- and Nanorods |
260 | _ | _ | |a Washington, DC |c 2014 |b ACS Publ. |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1394439895_21834 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a article |2 DRIVER |
500 | _ | _ | |3 POF3_Assignment on 2016-02-29 |
520 | _ | _ | |a The role of Si during the metal−organic vapor phase epitaxy of GaN rods is investigated. Already a small amount of Si strongly enhances the vertical growth of GaN. Reactive ion etching experiments show that the inner volume of the rod is much more strongly etched than the m-plane surface layer. Transmission electron microscopy and energy dispersive X-ray spectroscopy measurements reveal that Si is predominiantly incorporated in the surface layer of the m-plane sidewall facets of the rods. The formation of a SiN layer prevents growth on and etching of the m-planes and enhances the mobility of atoms promoting vertical growth. Annealing experiments demonstrate the extraordinary thermal resistivity in comparison to undoped GaN rod structures and GaN layers. The subsequent InGaN quantum well growth on the GaN rods reveals the antisurfactant effect of the SiN layer. A model based on the vapor−liquid−solid growth mode is proposed. The results help to understand the role of Si during growth of GaN rod structures to improve the performance of rod based light emitting and electronic devices. |
536 | _ | _ | |a 421 - Frontiers of charge based Electronics (POF2-421) |0 G:(DE-HGF)POF2-421 |c POF2-421 |x 0 |f POF II |
588 | _ | _ | |a Dataset connected to CrossRef, juser.fz-juelich.de |
700 | 1 | _ | |a Heilmann, M. |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Butzen, E. |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Haab, A. |0 P:(DE-Juel1)141986 |b 3 |u fzj |
700 | 1 | _ | |a Hardtdegen, H. |0 P:(DE-Juel1)125593 |b 4 |u fzj |
700 | 1 | _ | |a Dieker, C. |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Spiecker, E. |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Christiansen, S. |0 P:(DE-HGF)0 |b 7 |
773 | _ | _ | |a 10.1021/cg500054w |g p. 140224155239004 - |p 1486–1492 |n 3 |0 PERI:(DE-600)2048329-6 |t Crystal growth & design |v 14 |y 2014 |x 1528-7505 |
856 | 4 | _ | |u http://pubs.acs.org/doi/abs/10.1021/cg500054w |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/151447/files/FZJ-2014-01393.pdf |z Published final document. |y Restricted |
909 | C | O | |o oai:juser.fz-juelich.de:151447 |p VDB |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)141986 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)125593 |
913 | 2 | _ | |a DE-HGF |b Key Technologies |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-520 |0 G:(DE-HGF)POF3-529H |2 G:(DE-HGF)POF3-500 |v Addenda |x 0 |
913 | 1 | _ | |a DE-HGF |b Schlüsseltechnologien |1 G:(DE-HGF)POF2-420 |0 G:(DE-HGF)POF2-421 |2 G:(DE-HGF)POF2-400 |v Frontiers of charge based Electronics |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF2 |l Grundlagen zukünftiger Informationstechnologien |
914 | 1 | _ | |y 2014 |
915 | _ | _ | |a Peer review unknown |0 StatID:(DE-HGF)0040 |2 StatID |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1040 |2 StatID |b Zoological Record |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-9-20110106 |k PGI-9 |l Halbleiter-Nanoelektronik |x 0 |
920 | 1 | _ | |0 I:(DE-82)080009_20140620 |k JARA-FIT |l JARA-FIT |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)PGI-9-20110106 |
980 | _ | _ | |a I:(DE-82)080009_20140620 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|