000151451 001__ 151451
000151451 005__ 20240712101033.0
000151451 0247_ $$2doi$$a10.5194/acpd-14-5197-2014
000151451 0247_ $$2ISSN$$a1680-7367
000151451 0247_ $$2ISSN$$a1680-7375
000151451 0247_ $$2Handle$$a2128/5942
000151451 037__ $$aFZJ-2014-01397
000151451 082__ $$a550
000151451 1001_ $$0P:(DE-Juel1)7363$$aFuchs, H.$$b0$$eCorresponding author
000151451 245__ $$aOH regeneration from methacrolein oxidation investigated in the atmosphere simulation chamber SAPHIR
000151451 260__ $$aKatlenburg-Lindau$$bEGU$$c2014
000151451 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s151451
000151451 3367_ $$2DataCite$$aOutput Types/Journal article
000151451 3367_ $$00$$2EndNote$$aJournal Article
000151451 3367_ $$2BibTeX$$aARTICLE
000151451 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000151451 3367_ $$2DRIVER$$aarticle
000151451 500__ $$3POF3_Assignment on 2016-02-29
000151451 520__ $$aHydroxyl radicals (OH) are the most important reagent for the oxidation of trace gases in the atmosphere. OH concentrations measured during recent field campaigns in isoprene rich environments were unexpectedly large. A number of studies showed that unimolecular reactions of organic peroxy radicals (RO2) formed in the initial reaction step of isoprene with OH play an important role for the OH budget in the atmosphere at low mixing ratios of nitrogen monoxide (NO) of less than 100 pptv. It has also been suggested that similar reactions potentially play an important role for RO2 from other compounds. Here, we investigate the oxidation of methacrolein (MACR), one major oxidation product of isoprene, by OH in experiments in the simulation chamber SAPHIR under controlled atmospheric conditions. The experiments show that measured OH concentrations are approximately 50% larger than calculated by current chemical models for conditions of the experiments (NO mixing ratio of 90 pptv). The analysis of the OH budget reveals a so far unaccounted OH source, which is correlated with the production rate of RO2 radicals from MACR. In order to balance the measured OH destruction rate, (0.77±0.3) OH radicals need to be additionally reformed from each OH that has reacted with MACR. The strong correlation of the missing OH source with the production of RO2 radicals is consistent with the concept of OH formation from unimolecular isomerization and decomposition reactions of RO2. The comparison of observations with model calculations gives a lower limit of 0.03 s−1 for the reaction rate constant, if the OH source is attributed to an isomerization reaction of one RO2 species formed in the MACR+OH reaction as suggested in literature. This fast isomerization reaction would be competitive to the reaction of this RO2 species with minimum 150 pptv NO
000151451 536__ $$0G:(DE-HGF)POF2-233$$a233 - Trace gas and aerosol processes in the troposphere (POF2-233)$$cPOF2-233$$fPOF II$$x0
000151451 536__ $$0G:(DE-HGF)POF3-243$$a243 - Tropospheric trace substances and their transformation processes (POF3-243)$$cPOF3-243$$fPOF III$$x1
000151451 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x2
000151451 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000151451 7001_ $$0P:(DE-Juel1)136889$$aAcir, I.-H.$$b1
000151451 7001_ $$0P:(DE-Juel1)2693$$aBohn, B.$$b2
000151451 7001_ $$0P:(DE-Juel1)16306$$aBrauers, T.$$b3
000151451 7001_ $$0P:(DE-Juel1)16317$$aDorn, H.-P.$$b4
000151451 7001_ $$0P:(DE-Juel1)5628$$aHäseler, R.$$b5
000151451 7001_ $$0P:(DE-Juel1)16326$$aHofzumahaus, A.$$b6
000151451 7001_ $$0P:(DE-Juel1)16342$$aHolland, F.$$b7
000151451 7001_ $$0P:(DE-Juel1)3039$$aKaminski, M.$$b8
000151451 7001_ $$0P:(DE-Juel1)6775$$aLi, Xin$$b9
000151451 7001_ $$0P:(DE-Juel1)6776$$aLu, K.$$b10
000151451 7001_ $$0P:(DE-HGF)0$$aLutz, A.$$b11
000151451 7001_ $$0P:(DE-Juel1)7894$$aNehr, Sascha$$b12
000151451 7001_ $$0P:(DE-Juel1)16347$$aRohrer, F.$$b13
000151451 7001_ $$0P:(DE-Juel1)5344$$aTillmann, R.$$b14
000151451 7001_ $$0P:(DE-Juel1)2367$$aWegener, R.$$b15
000151451 7001_ $$0P:(DE-Juel1)16324$$aWahner, A.$$b16
000151451 773__ $$0PERI:(DE-600)2069857-4$$a10.5194/acpd-14-5197-2014$$gVol. 14, no. 4, p. 5197 - 5231$$n4$$p5197 - 5231$$tAtmospheric chemistry and physics / Discussions$$v14$$x1680-7375$$y2014
000151451 8564_ $$yPublishers version according to licensing conditions.$$zPublished final document.
000151451 8564_ $$uhttps://juser.fz-juelich.de/record/151451/files/FZJ-2014-01397.pdf$$yOpenAccess$$zPublished final document.
000151451 8564_ $$uhttps://juser.fz-juelich.de/record/151451/files/FZJ-2014-01397.jpg?subformat=icon-144$$xicon-144$$yOpenAccess
000151451 8564_ $$uhttps://juser.fz-juelich.de/record/151451/files/FZJ-2014-01397.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000151451 8564_ $$uhttps://juser.fz-juelich.de/record/151451/files/FZJ-2014-01397.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000151451 909CO $$ooai:juser.fz-juelich.de:151451$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000151451 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)7363$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000151451 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)136889$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000151451 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)2693$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000151451 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)16306$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000151451 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)16317$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000151451 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)5628$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000151451 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)16326$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000151451 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)16342$$aForschungszentrum Jülich GmbH$$b7$$kFZJ
000151451 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)3039$$aForschungszentrum Jülich GmbH$$b8$$kFZJ
000151451 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)6775$$aForschungszentrum Jülich GmbH$$b9$$kFZJ
000151451 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)7894$$aForschungszentrum Jülich GmbH$$b12$$kFZJ
000151451 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)16347$$aForschungszentrum Jülich GmbH$$b13$$kFZJ
000151451 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)5344$$aForschungszentrum Jülich GmbH$$b14$$kFZJ
000151451 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)2367$$aForschungszentrum Jülich GmbH$$b15$$kFZJ
000151451 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)16324$$aForschungszentrum Jülich GmbH$$b16$$kFZJ
000151451 9132_ $$0G:(DE-HGF)POF3-249H$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$aDE-HGF$$bMarine, Küsten- und Polare Systeme$$lAtmosphäre und Klima$$vAddenda$$x0
000151451 9131_ $$0G:(DE-HGF)POF2-233$$1G:(DE-HGF)POF2-230$$2G:(DE-HGF)POF2-200$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vTrace gas and aerosol processes in the troposphere$$x0
000151451 9131_ $$0G:(DE-HGF)POF3-243$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vTropospheric trace substances and their transformation processes$$x1
000151451 9141_ $$y2014
000151451 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000151451 915__ $$0StatID:(DE-HGF)0020$$2StatID$$aNo Peer review
000151451 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000151451 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000151451 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000151451 920__ $$lyes
000151451 9201_ $$0I:(DE-Juel1)IEK-8-20101013$$kIEK-8$$lTroposphäre$$x0
000151451 9801_ $$aFullTexts
000151451 980__ $$ajournal
000151451 980__ $$aUNRESTRICTED
000151451 980__ $$aJUWEL
000151451 980__ $$aFullTexts
000151451 980__ $$aI:(DE-Juel1)IEK-8-20101013
000151451 980__ $$aVDB
000151451 981__ $$aI:(DE-Juel1)ICE-3-20101013