001     151451
005     20240712101033.0
024 7 _ |a 10.5194/acpd-14-5197-2014
|2 doi
024 7 _ |a 1680-7367
|2 ISSN
024 7 _ |a 1680-7375
|2 ISSN
024 7 _ |a 2128/5942
|2 Handle
037 _ _ |a FZJ-2014-01397
082 _ _ |a 550
100 1 _ |a Fuchs, H.
|0 P:(DE-Juel1)7363
|b 0
|e Corresponding author
245 _ _ |a OH regeneration from methacrolein oxidation investigated in the atmosphere simulation chamber SAPHIR
260 _ _ |a Katlenburg-Lindau
|c 2014
|b EGU
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 151451
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
500 _ _ |3 POF3_Assignment on 2016-02-29
520 _ _ |a Hydroxyl radicals (OH) are the most important reagent for the oxidation of trace gases in the atmosphere. OH concentrations measured during recent field campaigns in isoprene rich environments were unexpectedly large. A number of studies showed that unimolecular reactions of organic peroxy radicals (RO2) formed in the initial reaction step of isoprene with OH play an important role for the OH budget in the atmosphere at low mixing ratios of nitrogen monoxide (NO) of less than 100 pptv. It has also been suggested that similar reactions potentially play an important role for RO2 from other compounds. Here, we investigate the oxidation of methacrolein (MACR), one major oxidation product of isoprene, by OH in experiments in the simulation chamber SAPHIR under controlled atmospheric conditions. The experiments show that measured OH concentrations are approximately 50% larger than calculated by current chemical models for conditions of the experiments (NO mixing ratio of 90 pptv). The analysis of the OH budget reveals a so far unaccounted OH source, which is correlated with the production rate of RO2 radicals from MACR. In order to balance the measured OH destruction rate, (0.77±0.3) OH radicals need to be additionally reformed from each OH that has reacted with MACR. The strong correlation of the missing OH source with the production of RO2 radicals is consistent with the concept of OH formation from unimolecular isomerization and decomposition reactions of RO2. The comparison of observations with model calculations gives a lower limit of 0.03 s−1 for the reaction rate constant, if the OH source is attributed to an isomerization reaction of one RO2 species formed in the MACR+OH reaction as suggested in literature. This fast isomerization reaction would be competitive to the reaction of this RO2 species with minimum 150 pptv NO
536 _ _ |a 233 - Trace gas and aerosol processes in the troposphere (POF2-233)
|0 G:(DE-HGF)POF2-233
|c POF2-233
|f POF II
|x 0
536 _ _ |a 243 - Tropospheric trace substances and their transformation processes (POF3-243)
|0 G:(DE-HGF)POF3-243
|c POF3-243
|f POF III
|x 1
536 _ _ |0 G:(DE-Juel1)HITEC-20170406
|x 2
|c HITEC-20170406
|a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Acir, I.-H.
|0 P:(DE-Juel1)136889
|b 1
700 1 _ |a Bohn, B.
|0 P:(DE-Juel1)2693
|b 2
700 1 _ |a Brauers, T.
|0 P:(DE-Juel1)16306
|b 3
700 1 _ |a Dorn, H.-P.
|0 P:(DE-Juel1)16317
|b 4
700 1 _ |a Häseler, R.
|0 P:(DE-Juel1)5628
|b 5
700 1 _ |a Hofzumahaus, A.
|0 P:(DE-Juel1)16326
|b 6
700 1 _ |a Holland, F.
|0 P:(DE-Juel1)16342
|b 7
700 1 _ |a Kaminski, M.
|0 P:(DE-Juel1)3039
|b 8
700 1 _ |a Li, Xin
|0 P:(DE-Juel1)6775
|b 9
700 1 _ |a Lu, K.
|0 P:(DE-Juel1)6776
|b 10
700 1 _ |a Lutz, A.
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Nehr, Sascha
|0 P:(DE-Juel1)7894
|b 12
700 1 _ |a Rohrer, F.
|0 P:(DE-Juel1)16347
|b 13
700 1 _ |a Tillmann, R.
|0 P:(DE-Juel1)5344
|b 14
700 1 _ |a Wegener, R.
|0 P:(DE-Juel1)2367
|b 15
700 1 _ |a Wahner, A.
|0 P:(DE-Juel1)16324
|b 16
773 _ _ |a 10.5194/acpd-14-5197-2014
|g Vol. 14, no. 4, p. 5197 - 5231
|0 PERI:(DE-600)2069857-4
|n 4
|p 5197 - 5231
|t Atmospheric chemistry and physics / Discussions
|v 14
|y 2014
|x 1680-7375
856 4 _ |y Publishers version according to licensing conditions.
|z Published final document.
856 4 _ |u https://juser.fz-juelich.de/record/151451/files/FZJ-2014-01397.pdf
|y OpenAccess
|z Published final document.
856 4 _ |u https://juser.fz-juelich.de/record/151451/files/FZJ-2014-01397.jpg?subformat=icon-144
|x icon-144
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/151451/files/FZJ-2014-01397.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/151451/files/FZJ-2014-01397.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:151451
|p openaire
|p open_access
|p driver
|p VDB:Earth_Environment
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)7363
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)136889
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)2693
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)16306
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)16317
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)5628
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)16326
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)16342
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)3039
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)6775
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)7894
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 13
|6 P:(DE-Juel1)16347
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 14
|6 P:(DE-Juel1)5344
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 15
|6 P:(DE-Juel1)2367
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 16
|6 P:(DE-Juel1)16324
913 2 _ |a DE-HGF
|b Marine, Küsten- und Polare Systeme
|l Atmosphäre und Klima
|1 G:(DE-HGF)POF3-240
|0 G:(DE-HGF)POF3-249H
|2 G:(DE-HGF)POF3-200
|v Addenda
|x 0
913 1 _ |a DE-HGF
|b Erde und Umwelt
|l Atmosphäre und Klima
|1 G:(DE-HGF)POF2-230
|0 G:(DE-HGF)POF2-233
|2 G:(DE-HGF)POF2-200
|v Trace gas and aerosol processes in the troposphere
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
913 1 _ |a DE-HGF
|l Atmosphäre und Klima
|1 G:(DE-HGF)POF3-240
|0 G:(DE-HGF)POF3-243
|2 G:(DE-HGF)POF3-200
|v Tropospheric trace substances and their transformation processes
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2014
915 _ _ |a Creative Commons Attribution CC BY 3.0
|0 LIC:(DE-HGF)CCBY3
|2 HGFVOC
915 _ _ |a No Peer review
|0 StatID:(DE-HGF)0020
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-8-20101013
|k IEK-8
|l Troposphäre
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a UNRESTRICTED
980 _ _ |a JUWEL
980 _ _ |a FullTexts
980 _ _ |a I:(DE-Juel1)IEK-8-20101013
980 _ _ |a VDB
981 _ _ |a I:(DE-Juel1)ICE-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21