000151456 001__ 151456
000151456 005__ 20210129213507.0
000151456 0247_ $$2doi$$a10.1073/pnas.1300908110
000151456 0247_ $$2ISSN$$a1091-6490
000151456 0247_ $$2ISSN$$a0027-8424
000151456 0247_ $$2WOS$$aWOS:000321500200033
000151456 0247_ $$2altmetric$$aaltmetric:2039151
000151456 0247_ $$2pmid$$apmid:23723350
000151456 037__ $$aFZJ-2014-01402
000151456 082__ $$a000
000151456 1001_ $$0P:(DE-Juel1)130496$$aAkola, J.$$b0$$eCorresponding author$$ufzj
000151456 245__ $$aNetwork topology for the formation of solvated electrons in binary CaO-Al$_{2}$O$_{3}$ composition glasses
000151456 260__ $$aWashington, DC$$bAcademy$$c2013
000151456 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1393420712_2136
000151456 3367_ $$2DataCite$$aOutput Types/Journal article
000151456 3367_ $$00$$2EndNote$$aJournal Article
000151456 3367_ $$2BibTeX$$aARTICLE
000151456 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000151456 3367_ $$2DRIVER$$aarticle
000151456 500__ $$3POF3_Assignment on 2016-02-29
000151456 520__ $$aGlass formation in the CaO–Al2O3 system represents an important phenomenon because it does not contain typical network-forming cations. We have produced structural models of CaO–Al2O3 glasses using combined density functional theory–reverse Monte Carlo simulations and obtained structures that reproduce experiments (X-ray and neutron diffraction, extended X-ray absorption fine structure) and result in cohesive energies close to the crystalline ground states. The O–Ca and O–Al coordination numbers are similar in the eutectic 64 mol % CaO (64CaO) glass [comparable to 12CaO·7Al2O3 (C12A7)], and the glass structure comprises a topologically disordered cage network with large-sized rings. This topologically disordered network is the signature of the high glass-forming ability of 64CaO glass and high viscosity in the melt. Analysis of the electronic structure reveals that the atomic charges for Al are comparable to those for Ca, and the bond strength of Al–O is stronger than that of Ca–O, indicating that oxygen is more weakly bound by cations in CaO-rich glass. The analysis shows that the lowest unoccupied molecular orbitals occurs in cavity sites, suggesting that the C12A7 electride glass [Kim SW, Shimoyama T, Hosono H (2011) Science 333(6038):71–74] synthesized from a strongly reduced high-temperature melt can host solvated electrons and bipolarons. Calculations of 64CaO glass structures with few subtracted oxygen atoms (additional electrons) confirm this observation. The comparable atomic charges and coordination of the cations promote more efficient elemental mixing, and this is the origin of the extended cage structure and hosted solvated (trapped) electrons in the C12A7 glass.
000151456 536__ $$0G:(DE-HGF)POF2-422$$a422 - Spin-based and quantum information (POF2-422)$$cPOF2-422$$fPOF II$$x0
000151456 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000151456 7001_ $$0P:(DE-HGF)0$$aKohara, S.$$b1
000151456 7001_ $$0P:(DE-HGF)0$$aOhara, K.$$b2
000151456 7001_ $$0P:(DE-HGF)0$$aFujiwara, A.$$b3
000151456 7001_ $$0P:(DE-HGF)0$$aWatanabe, Y.$$b4
000151456 7001_ $$0P:(DE-HGF)0$$aMasuno, A.$$b5
000151456 7001_ $$0P:(DE-HGF)0$$aUsuki, T.$$b6
000151456 7001_ $$0P:(DE-HGF)0$$aKubo, T.$$b7
000151456 7001_ $$0P:(DE-HGF)0$$aNakahira, A.$$b8
000151456 7001_ $$0P:(DE-HGF)0$$aNitta, K.$$b9
000151456 7001_ $$0P:(DE-HGF)0$$aUruga, T.$$b10
000151456 7001_ $$0P:(DE-HGF)0$$aWeber, J. K. R.$$b11
000151456 7001_ $$0P:(DE-HGF)0$$aBenmore, C. J.$$b12
000151456 773__ $$0PERI:(DE-600)1461794-8$$a10.1073/pnas.1300908110$$gVol. 110, no. 25, p. 10129 - 10134$$n25$$p10129 - 10134$$tProceedings of the National Academy of Sciences of the United States of America$$v110$$x1091-6490$$y2013
000151456 8564_ $$uhttps://juser.fz-juelich.de/record/151456/files/FZJ-2014-01402.pdf$$yRestricted$$zPublished final document.
000151456 909CO $$ooai:juser.fz-juelich.de:151456$$pVDB
000151456 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130496$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000151456 9132_ $$0G:(DE-HGF)POF3-529H$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vAddenda$$x0
000151456 9131_ $$0G:(DE-HGF)POF2-422$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vSpin-based and quantum information$$x0
000151456 9141_ $$y2013
000151456 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000151456 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000151456 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000151456 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000151456 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000151456 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000151456 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000151456 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000151456 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000151456 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000151456 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000151456 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000151456 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000151456 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000151456 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x0
000151456 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x1
000151456 980__ $$ajournal
000151456 980__ $$aVDB
000151456 980__ $$aUNRESTRICTED
000151456 980__ $$aI:(DE-Juel1)PGI-1-20110106
000151456 980__ $$aI:(DE-Juel1)IAS-1-20090406
000151456 981__ $$aI:(DE-Juel1)IAS-1-20090406