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The response of concentrated dispersions of charged colloids to low-frequency electric fields is gov-
erned by field-induced inter-colloidal interactions resulting from the polarization of electric double
layers and the layer of condensed ions, as well as hydrodynamic interactions through field-induced
electro-osmotic flow. The phases and states that can be formed by such field-induced interactions
is an essentially unexplored field of research. Experiments on concentrated suspensions of rod-like
colloids (fd-virus particles), within the isotropic-nematic phase coexistence region, showed that a
number of phases/states are induced, depending on the field amplitude and frequency [Soft Matter,
2010, 6, 273]. In particular, a dynamical state is found where nematic domains form and melt on a
time scale of the order of seconds. We discuss the microscopic origin of this dynamical state, which
is attributed to the cyclic, electric-field induced dissociation and association of condensed ions. A
semi-quantitative theory is presented for the dynamics of melting and forming of nematic domains,
including a model for the field-induced dissociation/association of condensed ions. The resulting
equation of motion for the orientational order parameter is solved numerically for parameters com-
plying with the fd-virus system. A limit-cycle is found, with a cycling-time that diverges at the
transition line in the field-amplitude versus frequency plane where the dynamical state first appears,
in accord with experimental findings.

PACS numbers: 64.70.pv, 64.70.qj, 64.70.M-

I. INTRODUCTION

The response of concentrated dispersions of charged
colloids to external electric fields has been intensively
investigated for frequencies in the sub-MHz to MHz
range. In two-dimensional confinement, dielectric po-
larization of the core of colloidal polystyrene spheres
has been shown to lead to string formation [1]. Later
the formation of strings and sheets has been found in
three-dimensional systems (see, for example, Refs.[2–4]).
These experiments are done at frequencies larger than
several tens of kHz up to a MHz, where the polariza-
tion of double layers is essentially absent for the micron-
sized particles that are used. Structure formation in
these experiments is due to dielectric polarization of the
cores of colloidal particles, resulting to dipolar-like inter-
colloidal interactions. Dielectric polarization requires rel-
atively large field amplitudes of the order of 100 V/mm.
Spinodal-like phase separation can be induced in ferro-
fluids by such a strong DC electric field (larger than
750 V/mm) [5], which can be theoretically described on
the basis of a thermodynamic approach that includes
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the field-induced dielectric contributions to the free en-
ergy [6]. There is a large body of literature on further
electric-field induced instabilities in other types of soft-
matter systems, mostly in two-dimensional confinement
like in thin polymer films, which is beyond the scope of
the present study.

The experiments mentioned above relate to dielectric
polarization at relatively high frequencies, where electric
double layers are essentially unpolarized. For micron-
sized colloids, polarization of the double layer (and the
layer of condensed ions) ceases to occur at frequencies be-
yond 1−10 kHz. Electro-osmotic flow, however, remains
active also for larger frequencies. Since this cut-off fre-
quency scales with the radius a of the colloids and the
Debye-length κ−1 approximately like (a + κ−1)−1.5 [7],
much higher frequencies are required to exclude double-
layer polarization for smaller colloids, much smaller than
a micron in diameter (for 10 nm colloids, for example, the
typical frequency beyond which double-layer polarization
ceases to occur is of the order of several MHz).

Mesoscopically large zig-zag bands haven been found
in suspensions of micron sized spherical colloids, at rela-
tively small frequencies where electric dipoles are induced
through double-layer polarization. The mechanism for
the zig-zag band formation is most probably as follows.
The frequency where bands appear is sufficiently large to
assure a phase-lag between the field-induced double layer
polarization and the external field. The dipole of a col-
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loidal sphere induces a dipole within the electric double
layer of a neighbouring colloid, with the corresponding
additional phase-lag. There is thus a phase-lag between
the dipoles directly induced by the external field and the
dipoles due to mutual polarization. This phase-lag leads
to a torque on each of the spheres. The rotating spheres
induce a fluid flow that leads to a rotation of the doublet
as a whole. In a crowded suspension, initially formed
chains of spheres are destroyed beyond a critical field
strength due to these rotations, after which zig-zag bands
are formed. The mutual polarization need not necessar-
ily be due to double-layer polarization, but may also be
due to, for example, surface-charge polarization [8–12].

Polarization of the electric double layer (and the layer
of condensed ions) is dominant for sufficiently low fre-
quencies of the alternating electric field and for suffi-
ciently low field strengths, such that dielectric polariza-
tion is essentially absent. There are quite some exper-
imental data on anomalous birefringence in this range
of low frequencies and low field strengths in suspen-
sions that contain rod-like macromolecules. The first
experiments on anomalous birefringence date back to
the 1920’s [13, 14], where experiments are reported on
vanadium-pentoxide, gold sols, and other metallic and
non-metallic colloids. In birefringence relaxation exper-
iments on micellar systems [15, 16] and polyelectrolyte
solutions [17], there is a relaxation process where the
rod-like entities tend to align perpendicular to the elec-
tric field. Such an anomalous perpendicular orientation
has been found under oscillatory electric fields in suspen-
sions of fd-virus particles at very low ionic strength in a
certain range of field amplitudes and frequencies [18]. In
all cases the anomalous behaviour is only found for suffi-
ciently high concentrations. The anomalous orientation
is therefore most probably due to field-induced interac-
tions through double-layer polarization and/or electro-
osmotic flow, but other mechanisms like the deformation
of the rod due to solvent friction and collective effects
can not be excluded. The mechanisms underlying the
anomalous orientation is not yet fully understood and is
still under debate [19–24]. In microscopy experiments on
microtubules [25], the perpendicular orientation of the
longer tubules is probably due to the hydrodynamically
induced bending of the rods (see in particular Fig.3d
in Ref.[25]), and field-induced interactions do not play
a role. Anomalous orientation is also observed in di-
lute suspensions of rods and spheres [26] and platelets
and spheres [27], and is accompanied by a change in
the turbidity of these systems [28], where the spheres
are found to form complex structures around the rela-
tively large rods and platelets. Apart from these bire-
fringence studies, there are as yet not many experimen-
tal data on the response of concentrated colloidal disper-
sions to such low-frequency and low-amplitude electric
fields where new phases, dynamical states and patterns
are formed. In a study on suspensions of low-aspect ra-
tio rods in the 10 kHz range, the observed structure
formation is probably due to dielectric polarization of

the cores of the rod-like colloids, since relatively high
electric field strengths are applied [29]. In concentrated
dispersions of highly charged rod-like colloids (fd-virus
particles), double-layer polarization and the polarization
of the layer of condensed ions, as well as hydrodynamic
interactions through electro-osmotic flow, have recently
been shown by the present authors to give rise to various
phases, dynamical states, and non-equilibrium critical
behaviour [30–32]. The fd-concentration in these experi-
ments is within the isotropic-nematic coexistence region
(without the external field). In the absence of the elec-
tric field, the system thus consists of nematic domains in
coexistence with an isotropic background. In particular
we found a dynamical state at low frequencies, where the
nematic domains melt and form. In this paper we aim
at an explanation of the microscopic origin of this dy-
namical state, and to develop a semi-quantitative descrip-
tion for the time-dependence of melting and forming of
the nematic domains. The origin of the dynamical state
is attributed to field-induced dissociation/association of
condensed ions, which changes the ionic strength, and
thereby the effective concentration. As will be seen, the
dissociation/association of condensed ions leads to an
effective concentration that oscillates around the lower
isotropic-nematic binodal concentration, so that nematic
domains alternatingly melt and grow. It is to be expected
that the existence of dynamical states is a general feature
of any suspension of highly charged an-isometric particles
that form a liquid crystalline phase.

This paper is organized as follows. In the next sec-
tion the phase/state diagram is briefly discussed, and
the origin of the dynamical state is addressed on an in-
tuitive level. The ingredients to describe the dynamical
state are field-induced torques, polarization-charge inter-
actions between the rods, and the field-induced dissoci-
ation of condensed ions. The torques and polarization-
induced interactions are discussed in section III. The re-
sults are used as an input in the Smoluchowski equation
in section IV to describe the melting and forming kinet-
ics of nematic domains. Melting of nematic domains is
analyzed on the basis of a dynamical extension of On-
sager’s theory for rods with a thick electric double layer,
as derived from the Smoluchowski equation, including
twist interactions. Growth of nematic domains from a
meta-stable state is formulated in terms of an empirical
equation of motion that is found in computer simulations.
Another essential ingredient for the understanding of the
origin of the dynamical state is the field-induced release
of condensed ions. There is so far no quantitative theory
that describes the frequency dependent, field-induced re-
lease of condensed ions. We therefore discuss a simple
model for release of condensed ions in section V. In a
numerical solution of the full set of equations of motion,
it is essential to know the location of binodals and spin-
odals. The location of phase boundaries is determined
from the above mentioned equations of motion for the
orientational order parameter, as discussed in section VI.
Numerical results are presented in section VII, including
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FIG. 1: The phase/state diagram in the electric-field am-
plitude versus frequency plane, for an fd-concentration of
2.0 mg/ml at an ionic strength of 0.16 mM . N is a phase
where nematic domains coexist with an isotropic phase, N?

is a chiral nematic phase, H is a uniform homeotropic phase
where the rods are aligned along the external field, and D
is a dynamical state where nematic domains melt and form.
”CP” indicates the non-equilibrium critical point.

a comparison with the experiments in Refs.[30–32].

II. THE STATE DIAGRAM AND THE
MECHANISM THAT UNDERLIES THE

DYNAMICAL STATE

In this section we describe the experimental system
and the phase/state diagram [30–32], and we discuss the
mechanism underlying the dynamical state.

Experiments are performed on dispersions of fd-
viruses, which are dsDNA strands covered with coat pro-
teins [35–37]. Their length is 880 nm, the thickness of the
core is 6.8 nm, while the persistence length is of the order
of 2500 nm. The fd-viruses are highly charged: the bare
charge is − 10 e/nm, of which about 85% is compensated
by condensed ions. These model systems for rod-like col-
loids have been used in the past to explore the phase be-
haviour of lyotropic liquid crystalline phases at relatively
high ionic strength (about 5 mM or more) [33, 34, 38–41],
and more recently to study the single particle dynamics
within such phases in the absence of an external field
[42–44]. The response of fd-virus suspensions to external
electric fields is explored for fd-concentrations of 2.0 and
2.8 mg/ml, which lie within the Isotropic-Nematic (I-N)
coexistence region for the low ionic strength of 0.16 mM ,
corresponding to a Debye length of 27 nm. Without the
external field, the system thus consists of nematic do-
mains floating in an isotropic background. Contrary to
what is seen at high ionic strength, the nematic domains
are now non-chiral, as the large Debye length screens
core-core interactions between fd rods. The long-ranged
electrostatic repulsions renders typical distances between
rods sufficiently large that the helical structure of their
cores does not give rise to chirality.

The experimental phase/state diagram in the electric-
field versus frequency plane for a fd-concentration of
2.0 mg/ml is given in Fig.1. The state where non-chiral
nematic domains coexist with isotropic regions (which we
referred to as the N -state), transforms to a state where
the nematic domains become chiral upon increasing the
field amplitude for frequencies below about 600 Hz, the
N?-state in Fig.1. At relatively high frequencies (larger
than 600 Hz), a uniform state exists, where the rods are
aligned along the external field, perpendicular to the elec-
trodes. We termed this phase the H-phase, where ”H”
stands for ”homeotropic”, as the rods are aligned per-
pendicular to the electrodes, along the field direction. At
low frequencies and elevated field amplitudes a dynam-
ical state is found, the D-state in Fig.1, where nematic
domains melt and form. The time scale on which melt-
ing and forming of the nematic domains depends on the
distance from the N?-to-D transition line. The melting-
forming time scale diverges on approach of this transi-
tion line, that is, the dynamics of melting and forming of
domains becomes arbitrary slow on approach of the N?-
to-D transition line. The size of the nematic domains
remains finite at the N?-to-D transition line, except on
approach of the ”non-equilibrium critical point”, indi-
cated by CP in Fig.1. Here, the maximum domain size
during forming and subsequent melting diverges. The
point indicated with CP is thus a ”non-equilibrium criti-
cal point” in the sense that a time scale and a length scale
diverge (critical exponents are reported in Ref.[32, 45]).

Polarization of the electric double layer and the layer
of condensed ions along the long axis of a rod occurs
when the frequency is sufficiently low that the ions are
able to diffuse over a distance comparable to the length
of a rod during the time of a cycle of the external field.
An upper bound for the frequency ν where polarization
is still significant is therefore estimated by τD ν < 1,
where τD = D/L2 is the time required for ions to dif-
fuse over the length L of the a rod (where D is the
diffusion coefficient of the ions). For a typical value of
the diffusion coefficient it is thus found that polariza-
tion charges are significant for frequencies below about
1 kHz. This frequency corresponds to the abrupt change
of the phase/state diagram, above which the uniform H-
phase is formed (a more quantitative estimate based on
an analysis of the polarization of the layer of condensed
ions will be discussed in section VII). The H-phase is
therefore believed to be stabilized by ”active” hydrody-
namic interactions through electro-osmotic flow that is
induced within the double layers and/or the layer of con-
densed ions. Electro-osmotic flow is active up to much
higher frequencies. Hydrodynamic interactions are im-
portant when the time τH for a shear wave to propagate
from one rod to a neighbouring rod is small as compared
to the cycle time of the external field. Since τH = ρ l2/η
(with ρ the mass density of the solvent, l a typical dis-
tance between two rods, and η the solvent viscosity ), it
is found that ν should be smaller than about 1000 kHz
for interactions through electro-osmotic flow to be im-
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FIG. 2: The microscopic mechanism underlying the dynam-
ical state. The various depicted stages are explained in the
main text. The intensity of the red colour of the core of the
rods indicates the amount of excess condensed ions, blue the
depletion of condensed ions, while the dotted lines around the
cores indicate the extent of the electric double layer. Typi-
cal cycling times are 2 s away from the transition line and
diverges on approach of the transition line.

portant.
In an attempt to develop an understanding of the mi-

croscopic origin of the stabilization mechanisms of the
various phases and states in the diagram in Fig.1, one can
thus distinguish two separate regimes. For frequencies
larger than about 1 kHz, a theory could be developed
that neglects interactions through field-induced polariza-
tion charges, and only accounts for electro-osmotic flow.
For frequencies below 1 kHz, interactions through po-
larization charges are dominant, so that a theory could
be developed that is based on field-induced interactions
through polarization charges. In this paper we consider
the latter, low-frequency regime. In particular it is the
aim of the present study to explain the microscopic origin
of the dynamical state D, where nematic domains melt
and form.

Based on the theory developed in the present paper,
the existence of the dynamical state can only be ex-
plained through field-induced dissociation/association of
condensed ions. Fd-virus particles carry many condensed
ions, where about 85% of the bare charge of 8.800 ele-
mentary charges is compensated by condensed ions. As
will be seen later in section VII, where explicit numer-
ical results will be discussed, this amount of condensed
is sufficient to make the following mechanism underly-
ing the dynamical state feasible. A nematic domain will
be oriented towards the direction of the electric field by
single particle torques. The layer of condensed ions rods
will be significantly polarized once the rods are aligned
along the field (see (I) in Fig.2). Condensed ions will be
repelled into the solvent when there is an excess amount
of condensed ions (indicated by red in Fig.2), and ions
will be drawn from the solvent towards the layer of con-

densed ions when there is a shortage of condensed ions
due to polarization (indicated by blue). The resulting
net release of condensed ions leads after some time to an
increase of the bulk ionic strength. This increase of the
bulk ionic strength leads to a decrease of the extent of the
electric double layers (see Fig.2(II)). Dotted blue lines
around the cores are used in Fig.2 to indicate the extent
of the double layers. In (II) the double-layer thickness
is smaller than in (I) due to the release of condensed
ions. The effective concentration therefore decreases.
When the effective concentration becomes smaller than
the lower binodal concentration, the nematic domains
become unstable and will melt, so that the degree of ori-
entational order decreases (as shown in (III)). Due to
decreasing degree of alignment along the field direction,
re-condensation will occur (see (III)). Re-condensation
leads to a decrease of bulk ionic strength, so that the
double-layer thickness increases (see (IV )). The effective
volume fraction increases accordingly, and the system re-
enters the two-phase isotropic-nematic coexistence region
(see (IV )). Orientational order now increases, and at the
same time the domains that form are orientated along the
electric-field direction due to the torques with which the
electric field acts on single rods (see (V )). The degree of
polarization of the condensed layer increases as the do-
mains align along the field direction, leading to release
of condensed ions (see again (I)), after which the entire
cycle repeats itself.

The location of the N? − D phase boundary in Fig.1
(in red) is thus determined by the amount of dissociated
condensed ions that is needed to bring the system to an
effective rod-concentration equal to the lower isotropic-
nematic binodal concentration. Clearly there is a mini-
mum electric field amplitude necessary to give rise to suf-
ficient release of condensed-ion. This minimum value for
the field amplitude increases with increasing frequency,
since larger frequencies lead to a diminished polarization,
and thereby to a decrease of the number of released ions.
This explains the larger field amplitude needed to induce
the D-state with increasing frequency. The transition
from the non-chiral N -phase to the chiral N?-phase can
also be understood in terms of release of condensed ions.
The ionic strength at sufficiently large field amplitudes
is increased through the release of condensed ions, which
renders the nematic chiral, just as for the equilibrium ne-
matic without a field at higher ionic strengths, which is
due to the helicity of the DNA strand that constitutes
the fd-virus particles [38, 46–48]. The field amplitude
within the N?-phase is not yet large enough to render
the nematic domains unstable, but is sufficiently large to
transform the non-chiral nematic to a chiral nematic.

Spatial variations in the dielectric constant can give
rise to electric-field induced instabilities [5, 6, 9, 10]. For
the present experiments, however, the field strengths (up
to about 5 V/mm) are too low to induced sufficient di-
electric polarization, and the concentration of fd-virus
particles is very low (the volume fraction is about 0.002),
which most probably leads to a minor effect due to di-
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electric polarization even for much higher field strengths.
In addition, the type of instability described here, where
quasi time-periodic patterns are seen, is of a quite dif-
ferent nature as compared to the spinodal-like demixing
induced by spatial variations in the dielectric constant.

III. FIELD-INDUCED TORQUES AND
POLARIZATION-CHARGE INTERACTIONS

In this section we describe the frequency dependent
torques and rod-rod pair interactions due to the electric
field induced polarization charges within the layer of con-
densed ions. The assumption here is that the majority
of ions is accumulated around the core of the rods, so
that the contributions due to polarization of the diffuse
double layer is of minor importance. It is important to
have a (semi-) quantitative prediction of the frequency
dependence of polarization, in order to understand the
frequency dependence of the location of transition lines,
as well as the D-state dynamics. In the first subsec-
tion the results from the theory for polarization as de-
scribed in Ref.[49] will be summarized. On the basis of
this theory the torque on a rod due to the external field
is calculated in subsection III B, and the pair-interaction
potential due to polarization charges is calculated in sub-
section III C. The torque and pair-interaction potential
will be used as an input to the Smoluchowski equation in
order to predict the dynamics of the orientational order
parameter.

A. Polarization of the layer of condensed ions

There is a large body of work, sometimes dating many
decades back, where the various polarization mechanisms
of colloidal particles have been addressed. The frequency-
dependent polarization of colloids can be formulated in
terms of an effective dielectric constant, which depends
on the bare dielectric constants and the conductivities of
the solvent and the colloid. This early approach is known
as the Maxwell-Wagner theory [51], which ignores the
existence of an electric double layer containing mobile
ions. In case of a thin electric double layer, the polar-
ization of the double layer can be accounted for within
such a Maxwell-Wagner approach as an additional con-
tribution to the surface conductivity, as first suggested
by O’Konski [50]. The double-layer polarization in this
case does not lead to an additional relaxation time of the
charge distribution, as it simply changes the value of the
surface conductivity. The surface conductivity due to the
presence of a thin double layer can be expressed in terms
of the surface potential and the diffusion coefficient of the
ions, assuming that the curvature of the colloidal-core
surface is much larger than the thickness of the double
layer [52, 53]. The Maxwell-Wagner approach, originally
formulated for spherical colloids, can also be used to ap-
proximately predict the polarization of rod-like colloids

[54, 55]. These theories are limited to thin double lay-
ers. The presence of thick double layers leads to an ad-
ditional polarization relaxation process at lower frequen-
cies, and can not be accounted for through an effective
surface conductivity. The mathematics involved in the
analysis of thick double layers is much more complicated
as compared to that for thin double layers. Besides a
number of theories where specific assumptions need to be
made to arrive at analytical results, and there are numer-
ical solutions of the standard electro-kinetic equations in
which such approximations are not necessary, and which
in particular allow large surface potentials (see, for ex-
ample, Refs.[56–63], and references therein). A recently
developed approach based on the Smoluchowski equation
in mode-coupling approximation, where the small ions
are treated as Brownian particles of finite size and which
includes hydrodynamic coupling between the small ions
and the colloidal particle, allows for the (partly numer-
ical) calculation of transport properties of charged col-
loids [64, 65]. The polarization of the layer of condensed
ions in a DC electric field has been discussed both for
low and high field amplitudes by Manning [66, 69]. The
above cited work is just a small selection from the large
body of work that has been published in this area. For
a more extensive overview we refer to the book of Russel
[67] and the series of books by Lyklema [68] (in particular
Volume II).

As mentioned in section II, about 85 % of the charged
groups, chemically bound to the surface of an fd-virus
particle, is compensated by condensed ions. Only 15 %
of the ions reside within the diffuse double layer. The
calculations concerning the dynamical state will there-
fore be based on the frequency-dependent solution of the
standard kinetic equations applied to a mobile layer of
ions, where the ions are constrained to move along the
surface of a cylindrical rod [49]. In this subsection we
will summarize this relatively simple model, and state
the results for response functions for the polarization
charge. Manning [69] developed a similar approach for
a discrete bare-charge distribution, which is a more re-
alistic description for polyelectrolytes, and obtains very
similar results for the polarization as in Ref.[49] for a
continuous bare-charge distribution on a cylindrical col-
loid. The ions in solution respond to the electric field
that is produced by the inhomogeneous charge distribu-
tion of the condensed ions. The inhomogeneous surface
charge distribution gives rise to an inhomogeneous dif-
fuse double layer, with a local charge density that is op-
posite in sign to the local surface charge density of the
mobile condensed ions. The frequency of the external
field is assumed to be sufficiently small, such that this
non-homogeneous diffuse double layer is in instantaneous
equilibrium with the condensate. The frequency ν of the
external field is therefore assumed to obey the following
criterion,

ν

2 D0 κ2
¿ 1 ,

where D0 is the diffusion coefficient of ions in solution
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and κ is the inverse Debye screening length,

κ =

√
2 β e2 c0

ε
, (1)

with β = 1/kBT (with kB Boltzmann’s constant and T
the temperature), e > 0 is the elementary charge, c0 is
the concentration of ions in solution outside the double
layer, and ε is the static dielectric constant of the solvent.
It is assumed here that only mono-valent ions are present.

We consider thin and long rods, such that the aspect
ratio,

p =
L

2a
,

is a large number (with a the radius of the core, and L it’s
length). The polarization surface charge density for rods
oriented parallel to the external field is typically a factor
p larger than the charge induced in case of perpendicular
orientation. The perpendicularly induced charge density
is therefore neglected, and only polarization along the
long axis of the rod is considered.

The external electric field that is considered is spatially
uniform and sinusoidally varying with time,

E(t) = E0 cos{ω t} ,

where ν = ω/2 π is the frequency of the field. Without
loss of generality, the field amplitude E0 is taken along
the z-direction.

The total concentration c of condensed ions is the sum
of the uniform surface concentration c̄ of mobile ions
that exists in the absence of the external field, and a
non-uniform contribution ∆c to the concentration of con-
densed ions that is induced by the external electric field,

c = c̄ + ∆c .

In Ref.[49] the total charge density is taken zero in case of
the unpolarized rod. Here we assume the more realistic
situation where the rod still carries a net surface charge
density σ0 when the rod is not polarized, so that (again
for mono-valent ions),

σ = σ0 + σP , σP = e ∆c ,

where σP is the surface charge density resulting from po-
larization. The surface charge density σP that results
from polarization of the condensate can be written in
terms of the in-phase R

′
and out-phase R

′′
response

functions [49],

σP (r |ω, t) = R
′
c, ‖(r |ω) cos{ωt}+ R

′′
c, ‖(r |ω) sin{ωt} .

The subscript ”c” is used to indicate that these response
functions relate to polarization of the layer of condensed
ions, while the subscript ” ‖ ” refers to the parallel ori-
entation that will be considered in the present analysis
where perpendicular polarization is neglected. The po-
tential can be similarly written in terms of in-phase and
out-phase response functions.

The frequency where the out-phase response functions
become significantly non-zero for polarization along the
rod’s long axis is set by the dimensionless frequency,

Λ‖ =
ω L2

4 Deff ,

with Deff the effective diffusion coefficient of the con-
densed ions,

Deff = D [ 1 + 2 κc aK(κ a) ] , (2)

where D is the bare diffusion coefficient of condensed
ions, and,

κc =
e2 β c̄

2 ε
= 2π lB c̄ = 2

lB
d L

Nc , (3)

is the inverse ”condensate length”, lB is the Bjerrum
length, and Nc is the total number of condensed ions
on a rod. Furthermore,

K(κ a) ≡ 1
2 π

∫ 2π

0

dϕ K0

(
κ a

√
2 (1− cos ϕ)

)
, (4)

with K0 the modified Bessel function of the second kind
of zeroth order. This function is plotted in Fig.3a. For
sufficiently thick double layers where κ a . 0.3−0.4, this
function is to a good approximation equal to − ln{κ a}
(see the dashed-dotted line in Fig.3a).

The effective diffusion coefficient in eq.(2) is larger
than the bare diffusion coefficient D of condensed ions
due to their repulsive interactions. An inhomogeneous
condensate distribution, without an external field, re-
laxes to the homogeneous distribution faster as a result
of the repulsive inter-ion interactions. The bare diffusion
coefficient D of the condensed ions is generally smaller
than that of ions in solution, since the condensed ions ex-
perience an additional friction with the core of the rod.

The in-phase and out-phase response functions for par-
allel orientation are given by,
(

R
′
c, ‖(z | ω)

R
′′
c, ‖(z | ω)

)
=

ε κc L E0, ‖
1 + 2 κc aK(κ a)

(5)

×
(

F (−)(Ω) F (+)(Ω)
F (+)(Ω) −F (−)(Ω)

)
·
(

cos{2Ω z/L} sinh{2 Ω z/L}
sin{2 Ω z/L} cosh{2 Ω z/L}

)
,

where z ∈ [− 1
2
L, 1

2
L] is the coordinate along the long axis

of the rod, and E0 ,‖ is the component of the external field
along the long axis of the rod. Furthermore the quantity,

Ω =
(
Λ‖/2

)1/2
, (6)

is introduced for convenience, and,

F (±)(Ω) =
1
Ω

cos{Ω} cosh{Ω} ± sin{Ω} sinh{Ω}
cos{2Ω}+ cosh{2 Ω} .

It should be noted that the contour variable z varies in
the direction of the electric field, that is, with increasing
z the corresponding location on the core changes in the
direction of the external field.
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FIG. 3: (a) The function K(x = κa) in eq.(4). The solid line is
obtained by numerical integration, and the dashed-dotted line
is the asymptotic value − ln{κ a} of K for small κ a. (b) The
function B defined in eq.(10). The asymptotic form of this
function is unity. (c) The functions I and h, defined in eqs.(9)
and (40), respectively. The function I describes the frequency
dependence of single particle torques, while the function h
characterizes the interactions strength between polarization
charges. The dimensionless frequency Ω is defined in eq.(6).

B. The torque on a rod

The electric field exerts a torque on each rod that tends
to align them along the direction of the field. In Ref.[49]
we derived an expression for the torque due to polariza-
tion of the layer of condensed ions, both due to polar-
ization parallel and perpendicular to the long axis of a
rod. It is shown there that the torque due to polarization
in the directions perpendicular to the rod’s long axis is
a factor p−2 smaller than the torque due to polarization
parallel to the rod. The torque due to perpendicular po-
larization can therefore be neglected for long and thin
rods. The parallel-polarization torque, averaged over a
cycle of the external field, is equal to,

T‖(û, t) =
π

8
L3 (û×E0) (û ·E0) ε F1(Ω) F3 . (7)

Here,

F1(Ω) = V (κca) [ W (κca, κa) + 1 ] I(Ω) ,

F3 = 2 [ 1 + κc aB(κ a)]2 − κc a [ 1 + κc aB(κ a) ] , (8)

where, V , W and I stand for,

V (κca) =
κc a

( 1 + κc aB(κ a))2
,

W (κca, κa) = − 2 κc aK(κ a)
1 + 2 κc aK(κ a)

,

I(Ω) =
1

2Ω3

sinh{2 Ω} − sin{2Ω}
cosh{2 Ω}+ cos{2 Ω} , (9)

and where K is the function defined in eq.(4), while,

B(κ a) ≡ 1
π

∫ 2 π

0

dϕ cos{ϕ}K0

(
κ a

√
2(1−cos ϕ)

)
, (10)

which function is plotted in Fig.3b. The asymptotic value
of B for small values of κa is unity. The frequency de-
pendent function I in eq.(9) is plotted in Fig.3c.
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FIG. 4: The bead model for the calculation of the interaction
potential between two rods, which is valid in case κ a . 1.
The coordinates r1 and r2 are the positions of the centers of
the two rods, while the unit vectors û1 and û2 specify their
orientation. The positions Rα of bead α of rod number 1
and Rβ of bead β within rod 2 are taken with respect to
the centers of the rods (for the specific example shown here,
α = −4 and β = 2).

C. Interactions between two rods

When the Debye length is larger than the core diame-
ter d, the interaction potential between two rods may be
approximated by pair-wise additive interactions between
spherical beads that constitute the two rods (as sketched
in Fig.4). The charge distribution within the diffuse dou-
ble layer of a given bead is essentially unaffected by the
presence of relatively small volume that is occupied by
neighbouring beads [70]. The double layer structure of a
rod can thus be represented as a sum of spherical double
layers of beads with radius a. The positions of the beads
on rod number 1 are written as r1 + Rα, where r1 is the
center of the rod, and Rα is the position of the center of
a bead relative to the center of the rod, as sketched in
Fig.4. The bead-index number α ranges from 0 for the
bead at the center of the rod, to ±N for the beads at the
ends of the rod. The number of beads is thus equal to
2N + 1, and the aspect ratio is equal to p = 1/(2N + 1).
The orientation of rod 1 is specified by the unit vector û1

along the long axis of the rod (see Fig.4). The relative
bead coordinates can thus be expressed as Rα = α d û1.
Similar coordinates are introduced for rod number 2. In
the following we will use the bead-number indices α and
β for rod 1 and 2, respectively.

The charge Qtotal
α on each bead α is the sum of the

charge Q̄ that would be present without the external
field, and the charge Qα due to polarization,

Qtotal
α = Q̄ + Qα .

For sufficiently small net charge densities and sufficiently
thick double layers, the instantaneous interaction poten-
tial between two beads is equal to the Debye-Hückel po-
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tential VQ(α, β),

VQ(α, β) =
exp{κ d}

4 π ε ( 1 + κ a )2
[
Qα + Q̄

] [
Qβ + Q̄

]

× exp {−κ |R + d ( β û2 − α û1) |}
|R + d (β û2 − α û1) | ,

where R = r2− r1 is the distance between the centers of
the two rods. The total potential between the two rods
is the pair-wise sum over all beads,

VQ(R, û1, û2) =
N∑

α,β=−N

VQ(α, β) . (11)

The index Q is used to indicate that this is the poten-
tial due to charge interactions. The bead-charges due to
polarization can be found from,

Qα ≡ Q(z = α d) = 4 π a2 (12)

×
[
R
′
c, ‖(z = α d | ω) cos{ω t}+R

′′
c, ‖(z = α d | ω) sin{ω t}

]
,

where the response functions are given in eq.(5). Rewrit-
ing the double summation in eq.(11) as a double con-
tour integral, and substitution of eqs.(11,12) leads to a
quite complicated expression for the potential, which is
not amenable for further analytical evaluation. Due to
the fact that the bead interactions are screened over the
Debye length κ−1, which is very small as compared to
the length scale on which the polarization surface-charge
density significantly changes along the contour of the rod,
an accurate approximation can be made that leads to a
relatively simple expression for the potential. When the
degree of alignment of the rods is not too high, there are
only a few beads on the two rods which are within a dis-
tance of a few times the Debye length. All other beads
are further apart, and do essentially not contribute to
the rod-rod interaction potential. These few interacting
beads on each of the two rods have essentially the same
charges. Let α0 and β0 denote the bead index number on
rod 1 and 2, respectively, for which the distance between
the two beads is minimal for a given R, û1 and û2. The
potential (11) can then be approximated as,

VQ(R, û1, û2) = N VQ(α0, β0) , (13)

where N is the number of interacting beads. For perpen-
dicular orientation of the two rods, the number of beads
that interact is ∼ 1/(κ a)2, while this number increases
like ∼ 1/ | û1 × û2 | for non-perpendicular orientations.
Hence,

N =
1

(κ a)2 | û1 × û2 | , κ a . 1 . (14)

This estimate is to be taken seriously only for orienta-
tions where the rods are not parallel, since in this case
the approximation (13) fails. We will assume that the

rods are sufficiently long and thin, and that the orienta-
tional order parameter is sufficiently low, that contribu-
tions from semi-parallel orientations where | û1 × û2 |.
1/p = d/L ¿ 1 can be neglected.

The distance ∆ between two beads α on rod 1 and β
on rod 2 is equal to,

∆ = R + β d û2 − α d û1 . (15)

For very long and thin rods, the probability for an tip-
body or tip-tip interaction is very small, except in phases
like a smectic phase or a columnar phase. Here we shall
only consider isotropic and nematic phases, where body-
body interactions determine the behaviour of concen-
trated suspensions. Hence, we assume that the two beads
with the minimum distance are located within the body
of both rods. In that case, the minimal distance ∆0 is of
the form,

∆0 = C v̂ , (16)

where the prefactor C depends on R, û1 and û2, and,

v̂ =
û1 × û2

| û1 × û2 | , (17)

is the unit vector perpendicular to both û1 and û2. The
prefactor is immediately found from eqs.(15-17),

C = (R · v̂) ,

while the bead index number α0 is found to be equal to,

α0 =
1
d

R · û1 − (R · û2) (û1 · û2)
| û1 × û2 |2 , (18)

and similarly,

β0 =
1
d

−R · û2 + (R · û1) (û1 · û2)
| û1 × û2 |2 . (19)

Putting all the above results together, the pair-
interaction potential can be written as a sum of a con-
tribution VEE due to interactions between polarization
charges, the potential VQ̄Q̄ due to interactions in the ab-
sence of the electric field, and VEQ̄ due to interactions
between charged beads in the absence of the field and
charges due to polarization,

VQ(R, û1, û1) = (20)
VEE(R, û1, û1)+VQ̄Q̄(R, û1, û1)+VEQ̄(R, û1, û1) .

The interaction potential VEE is found to be given by,

β VEE(R, û1, û2) = KE E2
0

û1, z û2, z

| û1 × û2 |
×exp {−κ |R · (û1 × û2) | / | û1 × û2 |}

κ |R · (û1 × û2) | / | û1 × û2 |
× [ G(S1) cos{ω t}+ H(S1) sin{ω t} ]
× [ G(S2) cos{ω t}+ H(S2) sin{ω t} ] , (21)
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where the dimensionless external field is introduced,

E0 = β e LE0 ,

which is the energy required to displace an ion over the
rod length against the electric field in units of the thermal
energy, and where,

KE =
(κc/κ)2 exp{κ d}

4 (1 + κ a)2 (1 + 2 kc aK(κ a))2
κ d 2

lB

=
exp{κ d}

(1 + κ a)2 (1 + 2 kc aK(κ a))2
lB

κL2
N2

c , (22)

is a dimensionless constant, where again Nc is the number
of condensed ions per rod. Furthermore,

G(S) = F (−)(Ω) cos{S} sinh{S}
+F (+)(Ω) sin{S} cosh{S} ,

H(S) = F (+)(Ω) cos{S} sinh{S}
−F (−)(Ω) sin{S} cosh{S} ,

with S either equal to S1 or S2,

S1 =
2Ω
L

R · û1 − (R · û2) (û1 · û2)
| û1 × û2 |2 ,

S2 = − 2 Ω
L

R · û2 − (R · û1) (û1 · û2)
| û1 × û2 |2 . (23)

The potential VQ̄Q̄ is equal to,

β VQ̄Q̄(R, û1, û2) = KQ
1

| û1 × û2 |
× exp {−κ |R · (û1 × û2) | / | û1 × û2 |}

κ |R · (û1 × û2) | / | û1 × û2 | , (24)

with,

KQ =
4Z2 exp{κ d}

( 1 + κ a)2
lB

κ L2

=
4 exp{κ d}
( 1 + κ a)2

lB
κ L2

( N0 −Nc, 0 )2 , (25)

with Z the valency of the entire rod, that is, the total
excess number of elementary charges of the unpolarized
rod, N0 is the number of immobile charges on the surface
of the rod and Nc,0 is the number of condensed ions in the
absence of the electric field. Note that Z e (N0 − Nc,0)
is the total charge of the rod. We will not specify the
potential VEQ̄ for reasons given below. The validity of
the above expressions is limited to those combinations
of relative positions and orientations where α0 and β0

in eqs.(18,19) are in [−p/2, p/2], where as before, p is
the aspect ratio. When for given values of the position
and orientations α0 and/or β0 are outside this range, the
potential is understood to be zero by construction.

For sufficiently large frequencies the configuration of
rods does not change during a cycle of the external field.

For fd virus this is the case for frequencies larger than
a few tens of Hz. We can therefore time-average the
potential VQ over one cycle of the external field, which
finally leads to (with the overbar denoting averaging over
a cycle of the external field),

V̄Q(R, û1, û1) = V̄EE(R, û1, û1) + VQ̄Q̄(R, û1, û1) ,

where,

β V̄EE(R, û1, û2) =

1
2
{G(S1) G(S2) + H(S1)H(S2) }KE E2

0

û1, z û2, z

| û1 × û2 |
× exp {−κ |R · (û1 × û2) | / | û1 × û2 |}

κ |R · (û1 × û2) | / | û1 × û2 | , (26)

while VQ̄Q̄ is not affected by averaging, and V̄EQ̄ = 0 (this
potential is ∼ [G(S) cos{ω t} + H(S) sin{ω t}], which
vanishes upon averaging). The important implication of
the slow response of the configuration of rods is that con-
figurational probability functions are essentially equal to
those in equilibrium, with the potential between the rods
equal to V̄Q. This is essential for the derivation of the
equation of motion for the orientational order parameter
tensor.

IV. MELTING AND FORMING KINETICS OF
NEMATIC DOMAINS

The larger part of this section is concerned with the
kinetics of melting of nematic domains when the ionic
strength is sufficiently large that the nematic state is
unstable, that is, when the effective concentration is
lower than the lower binodal concentration. Equations
of motion for the orientational order parameter are de-
rived, which not only describe the kinetics of melting, but
are also essential to determine the location of isotropic-
nematic phase boundaries. The kinetics of formation of
domains is described on the basis of a simple, empirical
equation of motion that is found in computer simula-
tions. Since the nematic domains are large compared to
the size of single rods, and the interfaces between ne-
matic domains and isotropic regions seem quite diffuse
(as seen experimentally), the kinetics will be described
on the basis of equations of motion for a homogeneous
system.

A. Melting kinetics

Starting point for the analysis of melting kinetics is
the Smoluchowski equation for an assembly of N uni-
axial, stiff rods, which is the fundamental equation
of motion for the probability density function (pdf)
P (r1, · · · , rN , û1, · · · , ûN , t) of all the positions rj and
orientations ûj of the rods (with particle number index
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j = 1, 2, · · · , N) in the overdamped limit. The Smolu-
chowski equation for very long and thin rods reads,

∂ P

∂t
=

N∑

j=1

[
3
4
Dt∇j ·

[
Î+ûjûj

]
·
{
∇jP +β P

[
∇jΨ−F(1)

j

]}

+ DrR̂j ·
{
R̂jP +β P

[
R̂jΨ−T(1)

j

]}]
, (27)

where Dt and Dr are the orientationally averaged trans-
lational diffusion coefficient and the rotational diffusion
coefficient of a single, non-interacting rod, respectively,
with Î the identity tensor, and Ψ is the total energy due
to rod-rod interactions. The force and torque due to
the action of the external electric field on single rods
are denoted as F(1)

j and T(1)
j , respectively. The forces

and torques due to rod-rod interactions are incorporated
through the total potential energy Ψ. Note that the ori-
entational dependence of the single-particle translational
diffusion coefficient is described by the tensor Î + ûj ûj ,
which assumes long and thin rods. Furthermore, ∇j is
the gradient operator with respect to rj and,

R̂j (· · · ) = ûj ×∇ûj
(· · · ) ,

is the ”rotation operator”, with ∇ûj
the gradient opera-

tor with respect to the Cartesian coordinates of ûj .
The one-particle pdf P (û, t) for the orientation û of a

rod can be found from the N -particle pdf by integration
with respect to all position coordinates and orientations,
except for û1 ≡ û,

P (û, t) =
∫

dr1

∫
dr2 · · ·

∫
drN

×
∮

dû2 · · ·
∮

dûN P (r1, r2, · · · , rN , û, û2, · · · , ûN , t) .

Assuming a pair-wise additive potential,

Ψ =
∑

i>j

V (ri − rj , ûi, ûj , t) ,

where V is the pair-interaction potential, integration of
the Smoluchowski equation (27) gives,

∂

∂t
P (û, t) = DrR̂ ·

{
R̂P (û, t) (28)

−β P (û, t)
[
Teff (û, t) + T(1)(û, t)

]}
,

with R̂ the rotational operator with respect to û, and
where the effective torque is equal to,

Teff (r, û) = −
∫

dr ′
∮

dû ′ ρ(r ′, û ′, t)

× g(r, r ′, û, û ′)R̂V (r− r ′, û, û ′) . (29)

Here, the pair-correlation function g is defined as,

P (r, r′, û, û, t) = P (r, û, t)P (r ′, û ′, t) g(r, r ′, û, û ′, t) ,

with P (r, r ′, û, û ′, t) the two-particle pdf for the coordi-
nates {r, û} and {r ′, û ′} of two rods (for mathematical
details of the derivation of eq.(28), see Ref.[71]). The
effective torque on a rod with its center at r and with
orientation û is the torque exerted by a second rod, av-
eraged over it’s position r ′ and orientation û ′.

Onsager showed that the expression,

g(r, r ′, û, û ′) = exp {−β V (r− r ′, û, û ′)} , (30)

which is generally valid for very dilute colloidal systems,
is also asymptotically exact for concentrated systems of
very long and thin, hard rods in equilibrium, to within
the nematic phase, provided that the degree of align-
ment is not very high [72, 73] (see also the appendix in
Ref.[71]). Onsager’s arguments for the validity of eq.(30)
also holds for repulsive charged rods, as long as the De-
bye length is very small as compared to the rod length
(but not necessarily small compared to the core diame-
ter). Using eq.(30) as an approximation for the present
analysis assumes, (i) that attractive electrostatic interac-
tions resulting from polarization charges are weaker than
the repulsive interactions of non-polarized rods, and (ii)
that non-equilibrium contributions are small. Assump-
tion (ii) relies on the fact that during a cycle of the ex-
ternal field, the relative positions and orientations of the
rods are essential unchanged. For sufficiently high fre-
quencies, the time dependent interaction potential can
be averaged over a cycle of the external field, as already
discussed before. The time-averaged interaction poten-
tial can then be treated as an equilibrium potential, for
which Onsager’s result in eq.(30) applies. The evalua-
tion of non-equilibrium contributions to the approxima-
tion (30) is a formidable task by itself, and is beyond the
scope of the present analysis.

Substitution of the approximation (30) into eq.(29)
leads to,

Teff (û, t) = −R̂V eff (û, t) , (31)

where the effective potential V eff is equal to (with R =
r ′ − r),

β V eff (û, t) = (32)

−
∫

dR
∮

dû ′ P (R, û ′, t) exp {−β V (R, û , û ′)} .

The interaction potential is equal to,

V (R, û, û′)
= ∞ , for core overlap ,

= V̄EE(R, û, û ′)+VQ̄Q̄(R, û, û ′) , no core overlap ,

where ”core overlap” refers to the overlap of the hard
cores of two rods, and V̄EE is the cycle-averaged electro-
static potential (26) that results from polarization charge
interactions, and VQ̄Q̄ is the potential (24) due to unpo-
larized charge interactions. Since,

∫
dR

∮
dû ′ P (R, û ′) = 1 ,
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while the effective torque is a derivative of the effective
potential, eq.(32) for the potential can be rewritten as,

V eff (û, t) = V eff
hc (û, t) + V eff

Q (û, t) , (33)

where,

β V eff
hc (û, t) =

∮
dû ′

∫

Vc(û,û ′)
dR P (R, û ′, t) (34)

is the contribution due to hard-core interactions, while,

β V eff
Q (û, t) =

∮
dû ′

∫

V̄c(û,û ′)
dR P (û ′, t) (35)

× [
1−exp

{−β
[
V̄EE(R, û , û ′)+VQ̄Q̄(R, û , û ′)

]}]
,

is the effective potential arising from charge interactions.
Here, Vc(û, û′) is the volume in R-space where the cores
of two rods with orientations û and û′ overlap, and
V̄c(û, û′) where there is no overlap. Note that the effec-
tive potentials are time dependent as a result of melting
of nematic order, and does not refer to the frequency with
which the external field oscillates. As mentioned before,
the frequency of the external field is sufficiently high that
rods do not change their configuration during a cycle of
the external field, so that instantaneous interaction po-
tentials can be time-averaged over a cycle-time.

B. Evaluation of the potentials V eff
hc and V eff

Q

In the derivation of equations of motion for the order-
parameter density from the Smoluchowski equation, fur-
ther approximations have to be made. Upon evaluation
of the integrals in eqs.(34,35) for the effective potentials,
the combinations | û × û ′ | and | û × û ′ | ln | û × û ′ |
are encountered (see appendices A and B for mathemat-
ical details). These functions are expanded with respect
to the orientational order parameter, with the neglect of
terms of fourth-order. Such an expansion allows for the
evaluation of the effective potentials in terms of the ori-
entational order parameter tensor S (the brackets denote
ensemble averaging),

S = < û û > =
∮

dû û ûP (û, t) , (36)

which is the central quantity of interest. An equation of
motion for this tensor is derived in the next subsection
from the Smoluchowski equation, after the present eval-
uation of the effective potentials. The largest eigenvalue
λ of S measures the degree of orientational order. The
Ginzburg-Landau type of expansion gives rise to the well-
know Maier-Saupe approximation for the effective hard-
core interaction potential [71], and reproduces the lower-
and upper-spinodal concentrations as obtained by On-
sager for hard-core rods [72, 73]. The mathematical de-
tails for the explicit evaluation of the effective hard-core
potential in terms of the orientational order parameter

are given in appendix A, and for the charge interactions
in appendix B.

Applying the above mentioned Ginzburg-Landau ex-
pansion with respect to the orientational order param-
eter to eq.(34) for the hard-core potential leads to the
Maier-Saupe potential (see appendix A),

β V eff
hc (û, t) =

21 π

32
dL2 ρ̄− 15π

32
dL2 ρ̄ û û : S(t) . (37)

The next higher order contribution is of fourth order in
the orientational order parameter λ. As before, d is the
diameter and L the length of the core of the rods, while
ρ̄ is the number density of rods.

The potential in eq.(35) due to charge interactions con-
sists of three contributions (see appendix B),

V eff
Q = ∆V eff

Q,hc + V eff
twist + V eff

pol .

The physical interpretation and the mathematical form
of these potentials are as follows:

(i) The term ∆V eff
Q,hc is a contribution that is of the

form of an effective hard-core potential, as in eq.(37).
This contribution, added to the ”bare” effective hard-
core potential (37) gives rise to an effective diameter of
the rods due to charge interactions, in the same spirit of
Onsager [72, 73] and Refs.[74, 75] for thin double layers.
Within the approximations discussed in appendix B, the
effective diameter for thick double layers (κ d . 1) is
given by,

deff

d
=

1
κ d

[ ln{KQ}+ C ] , (38)

where C ≈ −3/4. This contribution can thus be ac-
counted for by replacing d by deff in eq.(37). Scaling
of the effective diameter with the Debye length has also
been found for line charges in Ref.[76], with a very similar
prefactor that also depends logarithmically on the charge
of the rod.

(ii) There is a ”twisting potential” V eff
twist that is due

to interactions between the unpolarized charge density.
This term accounts for the increase in energy when rods
are aligned, due to an increased overlap of the electrical
double layers, and is given by,

β V eff
twist(û, t) = −21 π

32

[
57
84
− ln 2

]
L2

κ
ρ̄ (39)

+
15π

32

[
5
4
− ln 2

]
L2

κ
ρ̄ ûû : S .

Note that this is of the same form as the hard-core contri-
bution in eq.(37), within the approximations discussed in
appendix B. As will turn out in section VII, the twist ef-
fect never destabilizes the nematic state. It merely leads
to a torque that will decrease nematic order. The ”twist-
ing effect” has been discussed for thin double layers in
detail in Refs.[74, 75].
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(iii) The third contribution is related to interactions
between the polarization charges. This contribution V eff

pol

varies like ∼ E4
0 , and is equal to,

β V eff
pol (r, û) = − 7π

192
ρ̄

L2

κ

[
KE

KQ̄

]2

h(Ω) E4
0

×
(
Ê0 Ê0 : û û

) (
Ê0 Ê0 : S(r, t)

)
,

with,

h(Ω)=

[
1
Ω

sin{Ω}+sinh{Ω}
[cos{2Ω}+cosh{2Ω}]2

]2[
1+ 4

3
Ω4+ 2

5
Ω8

]
. (40)

The frequency dependent function h is plotted in Fig.3c.
This function vanishes at high frequencies as ions can not
follow the electric field anymore.

C. The equation of motion for the order parameter
tensor S

The equation of motion for the orientational order pa-
rameter tensor S is obtained by substitution of the poten-
tials discussed in the previous subsection into the Smolu-
chowksi equation (28), in combination with eqs.(31,33)
and the expression (7) for the single-particle torque. Mul-
tiplying both sides of the resulting equation of motion
with ûû and subsequent integration with respect to û
leads to an equation of motion for S, which however,
also contains the fourth order average S(4) =< ûûûû >.
To obtain a closed equation of motion for S, we used the
following the closure relation,

S(4) : M = 1
5

[S ·M + M · S (41)
−S · S ·M−M · S · S + 2S ·M · S + 3SS : M ] ,

with M an arbitrary matrix. This closure relation is de-
rived and discussed in Ref.[77]. The mathematical details
for the derivation of the explicit equation of motion for
S are discussed in appendix C. The equation of motion
for S can be written in the form,

∂ S
∂ τ

= ∆id + ∆Q,hc + ∆twist + ∆pol + ∆torque , (42)

with,

τ = Dr t ,

where ∆id is the contribution from free diffusion, ∆Q,hc

stems from hard-core interactions (with an effective hard-
core diameter that accounts for unpolarized charge inter-
actions), ∆twist is the twist contribution, ∆pol is the con-
tribution due to interactions from polarization charges,
and ∆torque is the contribution of single-particle torques.

The contributions are given by (see appendix C for
mathematical details),

∆id = 6
[

1
3
Î − S

]
,

∆Q,hc =
9
2

L

deff
ϕeff {S · S− SS : S } ,

∆twist = − 9
2

[
5
4
− ln 2

]
1

κ deff

× L

deff
ϕeff {S · S− SS : S } ,

∆pol =
7
60

[
KE

KQ

]2 1
κ deff

× L

deff
ϕeff h(Ω) E4

0

(
S : Ê0Ê0

)
F(S, Ê0) ,

∆torque =
1

80 z2

L

lB
F̃ I(Ω) E2

0 F(S, Ê0) , (43)

where Ê0 is the unit vector along the direction of the
external field, where the effective diameter is given in
eq.(38), and where the corresponding effective volume
fraction is defined as,

ϕeff =
π

4
d 2

eff L ρ̄ ,

where, as before, ρ̄ is the number density of rods. The
effective diameter and volume fraction are larger than
their corresponding bare values for the hard-core diam-
eter and hard-core volume fraction, respectively, due to
charge-charge interactions (in the absence of the exter-
nal field). These effective parameters depend crucially
on the ionic strength through their dependence on the
Debye length, which will turn out to be essential for
the existence of the dynamical state. Furthermore, the
frequency-independent quantity F̃ is defined as (with
F1(Ω), F3, and I(Ω) given in eq.(9)),

F̃ = F1(Ω) F3/I(Ω) ,

while,

F(S, Ê0) ≡ 3
2
S · Ê0Ê0 + 3

2
Ê0Ê0 · S + S · S · Ê0Ê0

+ Ê0Ê0 · S · S− 2S · Ê0Ê0 · S− 3SS : Ê0Ê0 , (44)

is introduced for brevity.
The above equations of motion can be used to calculate

the location of binodals and spinodals (see section VI),
and describe the melting dynamics of the nematic below
the lower-binodal concentration.

D. Domain growth within the meta-stable
two-phase region

As the Debye increases due to re-condensation and the
systems enters the two-phase region and becomes meta-
stable. It would be an enormous task to set up a (semi-
)quantitative theory for the growth kinetics of nematic
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domains from the meta-stable region with a precision
that is comparable to the melting kinetics as described
in the previous subsections. Higher order terms in an ex-
pansion with respect to the orientational order parameter
are required in a description of phase separation kinetics
starting in the meta-stable region. Such an endeavor is
beyond the scope of the present work. We will be satis-
fied with a simple semi-empirical approach. In Ref.[78]
(see especially Fig.3 in this reference) it has been shown
that the growth of the order parameter is in good ap-
proximation exponential in time, up to times where the
order parameter is approaching its saturation value quite
closely. During this time, the interface is quite diffuse,
so that anchoring effects can be neglected. In fact, an-
choring effects at domain walls can probably be neglected
in the experiments on fd-virus suspensions at low ionic
strength, also at the very late stages of growth, as the
observed interface is quite diffuse [30, 31]. The expo-
nential growth kinetics is captured by the simple kinetic
equation,

∂ S
∂ τ

=
S̄− S
T + ∆pol + ∆torque , (45)

where S̄ is the order parameter tensor of the nematic
phase in equilibrium, without the electric field, and where
T is the time scale on which domains increase their inter-
nal nematic order. The time scale T serves, within the
present approach, as a free parameter that should attain
values that are in agreement with growth rates observed
experimentally. The first term in eq.(45) describes the
growth kinetics in the absence of the field (similar to the
first three terms in eq.(42) for the melting kinetics), while
the last two terms incorporate the effect of field-induced
torques and interactions.

V. A MODEL FOR
DISSOCIATION/ASSOCIATION OF

CONDENSED IONS AND IT’S EFFECT ON
IONIC STRENGTH

As already indicated in section II, the above equations
of motion do not exhibit oscillatory behaviour (also when
reasonable approximations for the hydrodynamic torque
due to bending [22] are added), and always give rise to
a time-independent, stationary solution for S. What is
neglected so far is the possibility that condensed ions can
dissociate from, and associate to, the surfaces of rods. As
argued in section II, release and re-condensation of ions is
essential for the observed melting and forming of nematic
domains in the D-state.

Due to the field-induced polarization of the layer of
condensed ions, there is an excess of condensed ions as
compared to the unpolarized state on one half of the rod,
while at the same instant there is a reduction on the other
half of the core of the rod. Condensed ions tend to dis-
sociate into the solvent when there is an excess concen-
tration of condensed ions, while condensation will occur

when there is a reduction as compared to the surface
concentration in the absence of the external field. When
the concentration of condensed ions differs from the equi-
librium concentration, the resulting polarization induced
electric field perpendicular to the rod either pushes con-
densed ions into the solvent, or attracts ions from the
solvent towards the condensed layer (see the sketch in
Fig.5a). The same mechanism of association/dissociation
of condensed ions has been proposed in Refs.[79], on the
basis of which the saturation of the induced dipole mo-
ment in a DC electric field of DNA strands with different
lengths can be understood.

The amount of ions that is released per unit time is pro-
portional to the local excess concentration of condensed
ions and the local electric field strength perpendicular to
the cylindrical axis (except for a small contribution at the
tip of the rod). The latter field strength is proportional
to the excess charge density. The flux of condensed ions
towards the solvent at positions where there is an excess
of condensed ions, averaged over a cycle of the external
field, is therefore proportional to the total squared ex-

cess charge density
(
R
′
c, ‖

)2

+
(
R
′′
c, ‖

)2

. The same holds
for the association of condensed ions on that part of the
core where there is a shortage of condensed ions. The
field strength that pulls ions to the rod surface as well as
the concentration near the outer part of the condensed
layer are proportional to the excess charge density. The
proportionality constants for dissociation and association
are different, also because the concentration in the inner
part and the outer part of the condensed layer are not
the same. The rate-of-change of the number of condensed
ions, averaged over a cycle of the external field, is thus
found from integration of the expressions (5) for the in-
duced charges densities to be equal to (using eq.(3) for
κc) (as before, τ = Dr t),

d Nc

dτ
= −Cd N2

c

(
z2 lB

L [ 1 + 2 κc aK(κ a) ]

)2

E2
0

×
(
Ê0Ê0 : S(t)

)
I(Ω) , (46)

where the function I(Ω) (that also describes the fre-
quency dependence of single-particle torques) is given in
eq.(9). This function is plotted in Fig.3c. The constant
Cd will be referred to as the (effective) dissociation con-
stant. As there is no microscopic theory available that
allows for the calculation of Cd, this constant will be
used as an adjustable parameter when a comparison to
experiments is made.

When a rod is to some extent oriented perpendicu-
lar to the external field, the layer of condensed ions will
also be polarized in the direction perpendicular to the
long axis of the rod (see Fig.5b). This leads to an in-
ternal electric field that pulls the condensed ions that
are in excess, back towards the surface of the rod (as in-
dicated by the green arrows in Fig.5b). The release of
condensed ions due to parallel polarization therefore di-
minishes as the perpendicular polarization increases. We
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account for this by introducing a threshold for the ori-
entational order along the field direction, below which
no ion release occurs, but re-condensation takes place (a
similar threshold field amplitude has been introduced in
Ref.[79], although on the basis of different arguments re-
lated to thermal fluctuations of the number of condensed
ions). Formally this is implemented by replacing S in
eq.(46) by S−αthr Ê0Ê0, where the numerical (positive)
value of αthr sets the threshold for dissociation. What is
observed experimentally is that the dynamical state per-
sists on increasing the electric field strength. Without the
orientational threshold (αthr = 0), there will be certain
field strength above which the system becomes isotropic,
contrary to what is observed. The ionic strength then in-
creased to an extent that the nematic remains unstable,
and the isotropic state persists.

There is an un-physical feature of the equation of mo-
tion (46). Since the right hand-side is always negative,
this equation implies that for a fixed orientation of a rod,
all condensed ions will eventually dissociate. What has
not been taken into account in the arguments leading
to this result is that when sufficient ions are dissociated
there will be a quasi-stationary state where the associa-
tion of condensed ions on one half of the rod is as fast as
the dissociation at the other half of the rod. The equation
of motion (46) only describes the initial stages of ion re-
lease. The limiting number Nlim of condensed ions after
a long time, keeping the orientation of the rods fixed, will
decrease with the squared external field strength compo-
nent along the rods long axis, since that field strength sets
the potential perpendicular to the rods surfaces which
drives the overall dissociation. On average, the quantity
that sets the limiting number of condensed ions is there-
fore ∼ E2

0

(
Ê0Ê0 : S

)
I(Ω), where, according to eq.(46),

I(Ω) describes the effectiveness of the field due to the
finite diffusivity of the ions. In addition, the number of
condensed ions should be equal to Nc, 0 (the number of
ions without the field) for very low field amplitudes, while
it should become formally equal to zero for large field
strengths. The simplest form for the limiting number of
condensed ions that complies with these requirements is,

Nlim =
αlim Nc, 0

αlim + E2
0

(
Ê0Ê0 : S

)
I(Ω)

,

where αlim is an adjustable parameter. To ensure that,
for a given orientation, the number of condensed ions in-
deed takes the value Nlim after long times, N2

c in eq.(46)
is replaced by N2

c −N2
lim. Note that this expression for

the limiting number of condensed ions is only applica-
ble for orientations towards the electric field for which
the above described threshold for dissociation is reached.
For orientations below the threshold we have,

Nlim = Nc,0 , when , (S : Ê0Ê0) < αthr ,

since for such orientations no dissociation occurs, by def-
inition.

(a) (b)

excess

shortage

E

(a) (b)

excess

shortage

E

FIG. 5: (a) Polarization of the layer of condensed ions par-
allel to the rods long axis leads to an internal electric field
that drives condensed ions into the solvent when there is an
excess of ions (indicated in red). In case of a shortage of con-
densed ions (indicated in blue), ions from the solution tend
to condense in order to restore equilibrium. (b) Perpendicu-
lar polarization creates an internal electric field that pulls the
excess condensed ions back to the rods surface, as indicated
by the green arrows.

We thus finally arrive at the following expression for
the time-rate of change of the number of condensed ions,,

dNc

dτ
= ±Cd

{
N2

c −N2
lim

} (
z2lB

L [1+2 κc aK(κ a)]

)2

×E2
0

(
Ê0Ê0 :

[
S(t)− αthr Î

] )
I(Ω) , (47)

where the ”+” applies when (S : Ê0Ê0) < αthr, and the
”− ” applies otherwise.

It needs some time before the ion concentration within
the bulk of the solvent is affected by the released con-
densed ions. Ions that dissociate from the condensed
layer need to diffuse over typical distances of a few rod
lengths in order to render a change in the homogeneous
bulk concentration of ions. Similarly, it takes some time
for ions to diffuse from the bulk towards the rods surface
from the solvent bulk as ions associate to the condensed
layer. The change of the bulk concentration of ions at
time t is, in first approximation, therefore proportional
to the number ∆Nc = Nc, 0−Nc of released ions at time
t− τdif , where τdif is of the order of the time needed for
ions to diffuse over distances equal to a few rod lengths.
The time-dependent (inverse) Debye length at time t is
therefore taken equal to (see eq.(1)),

κ(t) =

√
2 β e2 [ c0 + ρ̄ ∆Nc(t− τdif ) ]

ε
, (48)

where ρ̄ is the number density of rods. The effective
diameter in eq.(38) is now also a time-dependent quantity
equal to,

deff (t)
d

=
1

κ(t) d
[ ln{KQ(κ ≡ κ(t))}+ C ] , (49)

where the interaction strength KQ in eq.(25) is to be
evaluated with an inverse Debye length equal to κ(t).
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The Debye length thus changes due to the release of
condensed ions with a certain time lag, which affects
the effective diameter with the same time lag. The
change of the effective diameter changes the location of
phase boundaries in a cyclic manner as release and re-
condensation occurs, which is at the origin of the dy-
namical state as explained on an intuitive level in section
II.

VI. BINODAL AND SPINODAL
CONCENTRATIONS

To solve the equations of motion, with the inclusion of
of dissociation of condensed ions, it is necessary to know
the location of the lower binodal concentration. Below
the effective lower binodal concentration, melting occurs
according to the equations of motion derived in section
IV, while above the binodal, nematic order increases as
discussed in subsection 45. The location of phase bound-
aries is therefore essential for the numerical solution of
the equations of motion that we derived above.

For uncharged rods, the upper spinodal concentration
can be found analytically from a stability analysis of
the equation of motion (43), where only the terms ∆id

∆Q,hc contribute, and where deff = d and ϕeff = ϕ.
The upper spinodal concentration is found to be equal to
(L/d)ϕ = 4, in accordance with Onsager’s exact asymp-
totic result for long and thin hard rods [72, 73]. The
lower spinodal concentration can be obtained numerically
from the same equation of motion (43), and is found to
be equal to (L/d)ϕ = 3.556 · · · .

For charged rods, a numerical solution of the equa-
tion of motion (43) for the order parameter reveals that
the electric-field contributions ∆pol and ∆torque change
spinodal concentrations less then 0.5% for the maximum
electric field strengths of 10 V/mm that are applied in the
experiments. This very small effect of the electric field
on the location of phase-boundary concentrations can be
neglected.

To obtain the lower and upper spinodal and binodal
concentrations for charged rods, including the twist ef-
fect, we make use of the fact that the twist contribution
and the effective hard-core contribution to the equation
of motion (43) have the same dependence on the order
parameter. This allows to calculate the binodal concen-
trations directly from the Onsager binodal concentrations
((L/d)ϕ = 3.290 and 4.191, respectively [75]), by the
identification,

[
L

d
ϕ

]

Onsager

=
L

deff
ϕeff

{
1−

[
5
4
−ln 2

]
1

κ deff

}
. (50)

The spinodal and binodal fd-virus concentrations in units
of mg/ml can be obtained from a simple numerical eval-
uation of the right hand-side using eq.(38), together with
the length L = 880 nm and thickness d = 6.8 nm of
the fd-virus particles, as well as the connection ϕ =
0.0011 × [fd] between the hard-core volume fraction ϕ

10 20 30 40 50 60
0

2

4

6

8

10

(b)

500

2000

10000

1000

N0-Nc=

upper spinodal

and binodal

[mg/ml]

[fd]

10 20 30 40 50 60
0

1

2

3

4

1/k [nm]

(c)

width of the I-N

coexistence region

D [fd]

[mg/ml]
500

2000

10000

1000

N0-Nc=

10 20 30 40 50 60
0

2

4

6

8

10

[mg/ml]

500

2000

10000

1000

N0-Nc=[fd]
lower spinodal

and binodal

(a)

FIG. 6: (a) The location of the lower spinodal (dashed lines)
and binodal (solid lines) concentrations as a function of the
Debye length for various values of N0 −Nc. (b) The same as
in (a), but now for the upper spinodal and binodal concen-
trations. (c) The width of the I-N coexistence region. The
parameters chosen here relate to fd-virus particles.

and the fd-concentration [fd] in mg/ml. The spinodal
concentrations can be obtained from the numerical so-
lution of the equation of motion for S, which gives the
same result.

Since deff depends on the Debye length κ−1 and the
difference N0 − Nc between the total number N0 of im-
mobile charges on the rod minus the number Nc of con-
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densed ions, the location of spinodal and binodal concen-
trations depend on these two independent parameters.
The location of the upper spinodal and binodal concen-
trations is given in Fig.6a (the dashed and solid lines,
respectively), as a function of the Debye length for vari-
ous values of N0−Nc. Similar plots for the lower spinodal
and binodal concentrations are given in Fig.6b, while the
width of the coexistence region is given in Fig.6c. As can
be seen, the width of the coexistence region increases
when the Debye length is decreased, in accordance with
what is seen experimentally. The twist effect has a pro-
nounced effect on the width of the coexistence region, as
has been predicted before for thin double layers [74, 75].

Detailed experiments on the location of isotropic-
nematic binodals for fd-viruses and their mutants, as
a function of the persistence length and ionic strength
(larger than 5 mM), can be found in Ref.[41]. Note that
the present theory can not be applied at these relatively
high ionic strengths, as our expressions for the effective
diameter and the twist effect are only applicable for thick
double layers.

VII. NUMERICAL RESULTS AND
COMPARISON TO EXPERIMENTS

The length of the fd-core is L = 880 nm, the bare
core thickness is d = 6.8 nm, and the number of neg-
ative bare charges is equal to 8800. The number of
mono-valent positively charged condensed ions as ob-
tained from Manning’s condensation theory is equal to
7500 [80, 81]. This amount of condensed ions is in rea-
sonable agreement with the experimentally determined
location of the lower and upper binodal concentrations
(1.5 ± 0.2 and 3.4 ± 0.5 mg/ml, respectively [82]) and
the calculated locations in Fig.6. The concentrations
of fd-virus particles for the experiments in Refs.[30, 31]
are 2.0 and 2.8 mg/ml, corresponding to bare values of
(L/d)ϕ = 0.28 and 0.39, respectively (where ϕ is the
bare volume fraction). The TRIS/HCl buffer concentra-
tion is 0.16 mM , corresponding to a total ion concentra-
tion of 0.25 mM (without the electric field), and a Debye
length of 27 nm (CO2 that dissolves from the air has to
be taken into account for these low buffer concentrations
[83]). The value of the orientational order parameter (the
largest eigenvalue of S) at the binodal concentration is
found in experiments to be equal to λ = 0.93, which
value is used in eq.(45) for the domain-growth dynamics
[41, 83]. Numerical results turn out to be quite insensi-
tive to the threshold value αthr in eq.(47) that sets the
orientation of the rod along the field direction beyond
which ion release occurs, which is chosen as αthr = 1/2.
The time τdif between ion-release and the resulting in-
crease of the bulk ionic strength is taken equal to the time
needed for ions in solution to diffuse over ten rod lengths.
The parameters that critically determine the location of
the N?-to-D transition lines in the field-amplitude ver-
sus frequency plane, as well as the time scale on which

melting and domain growth occurs as a function of the
distance from the transition lines, are the time scale for
domain growth T in eq.(45), the parameters αlim and
Cd in eq.(47) that set the dynamics of dissociation and
association of condensed ions, and the bare diffusion co-
efficient D in eq.(2) for diffusion of condensed ions that
includes friction with the core of the rod. A good compar-
ison with experiments [30–32] is found when these values
are chosen as T = 100, αlim = 1.2×10−4, Cd = 2.0×105,
and D = D0/290 (where D0 = 2.0 × 10−9 m2/s is the
diffusion coefficient of ions in solution). Note that the
value for T = 100 corresponds to a domain growth time
of 100/Dr = 5 s, which is within the range of experimen-
tally observed growth rates. The value of D = D0/290
is not the same, but of similar order, as determined in
Ref.[49] from a fit to birefringence experiments on fd-
virus suspensions at very low fd-concentration and very
low ionic strength, corresponding to a reported Debye
length of 300 nm [18].

The appropriate measure for the binodal and spin-
odal concentrations is the quantity on the right hand-
side in eq.(50), to which we shall refer to as Ceff . When
Ceff is smaller than the corresponding value of 3.290
for the lower binodal, the dynamics is gouverned by the
equation of motion (42,43) that describes melting of ne-
matic domains, while for larger values the dynamics is de-
scribed by the domain-growth equation (45). Note that
the isotropic state is meta-stable up to Ceff = 4, which
corresponds to an effective concentration that is never
reached during a cycle of melting and forming of nematic
domains in the dynamical D-state. Hence, Ceff is calcu-
lated from the instantaneous ionic strength, on the basis
of which either eq.(42,43) or (45) is used in a time step.
For a given Debye length, the value of Ceff corresponds
to an effective rod-concentration, which, for the fd-virus
particles, we shall refer to as the critical fd-concentration
[fd]crit. This is the fd-concentration below which ne-
matic domains melt, and above which nematic domains
are formed. Since the Debye length is time dependent
through the dissociation/association of condensed ions,
this critical fd-concentration is also time dependent. In
the dynamical state, the critical fd-concentration oscil-
lates around the bulk fd-concentration of the dispersion.

With the above introduced values of the various pa-
rameters we find oscillations of the orientational order
parameter λ (the largest eigenvalue of S), as can be seen
in Fig.7. The field amplitudes indicated in the figure
are corrected for the dielectric polarization of the ITO-
water interface, which renders the actual field amplitudes
a factor 0.096 smaller than the applied field amplitudes.
There is a growth of orientational order when the fd-
concentration is larger than [fd]crit, and a relatively fast
decay towards the isotropic state (where λ = 1/3) other-
wise. In addition, the period of oscillation is strongly
depending on the distance from the N?-to-D transition
line, which is located at 0.30 V/mm, and saturates to
about 2 s for high field amplitudes (this will be discussed
in more detail below).
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FIG. 7: Oscillations of the orientational order parameter λ for
various field amplitudes at a fixed frequency of 200 Hz and a
fd-concentration of 2.0 mg/ml (see the movies Movie-Ds for
the slow dynamics and Movie-Df for the fast dynamics in the
supplementary material).
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FIG. 8: The experimental and theoretical transition lines
in the field-amplitude versus frequency plane, for fd-
concentrations of (a) 2.0 and (b) 2.8 mg/ml. The open circles
are experimental data only corrected for the ITO-water in-
terface polarization, while the solid data are also corrected
for electrode polarization. The red lines are the theoretical
transition lines.

The location of the N?-to-D transition line are the
points in the field amplitude versus frequency plane
where the period of oscillation diverges, and no oscil-
lations occur upon lowering the field amplitude. That
the location N?-to-D transition line for the two fd-
concentrations of 2.0 and 2.8 mg/ml is correctly repro-
duced by theory is show in Fig.8 (the solid red lines).
Due to the assumption that the configuration of rods is
essentially unaltered during a cycle of the external field,
the theory is only valid for frequencies larger than a few
tens of Hz. The transition lines are therefore calculated
only for frequencies larger than 50Hz. The open data
points are corrected for ITO-solvent polarization only,
while the filled data points are also corrected for elec-
trode polarization.

In view of the frequency dependence of the polariza-
tion response functions an estimate can be made of the
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FIG. 9: (a) Limit cycles in the eigenvalue λ versus ∆[fd] =
[fd]− [fd]crit plane, with [fd] = 2.0 mg/ml the analytical fd-
concentration, and [fd]crit the time-dependent concentration
where the lower binodal is located. Limit cycles are shown
for a frequency of 200 Hz, for various field amplitudes (cor-
rected for the ITO-solvent interface polarization). Points are
at equal time intervals of 0.05 s, and the cycles are traversed
anti-clockwise. (b) The time-constant τ of limit cycles as a
function of the field amplitude. The points correspond to
the limit cycles shown in (a), and the line corresponds to the
power-law given in the main text.

frequency beyond which polarization essentially ceases to
occur (a possibly over-simplified estimate has been dis-
cussed section II). From the frequency dependence of the
polarization response functions in Fig.3c it is found that
polarization ceases to occur when Ω = (Λ‖/2)1/2 & 2,
where Λ‖ = ω L2/4Deff, with the effective diffusion coef-
ficient given in eq.(2), and with the bare diffusion coeffi-
cient of the condensed ions being equal to D ≈ D0/290
(with D0 the diffusion coefficient of ions in solution, while
the factor 290 has been established in section VII, be-
ing due to friction of condensed ions with the core of
fd-virus). For typical parameters applying to fd-virus
particles, with a Debye length of 27 nm, it follows that
the critical frequency beyond which polarization ceases to
occur is ν ≈ 670 Hz. This is in agreement with the ex-
perimentally observed frequency of ≈ 400−700 Hz where
the state diagram changes its form (see Fig.1), and again
suggests that the homeotropic H-phase is stabilized by
hydrodynamic interactions through electro-osmotic flow.

Limit cycles in the orientational order parameter λ
versus ∆[fd] plane are given in Fig.9a, where ∆[fd] =
[fd] − [fd]crit, with [fd] = 2.0 mg/ml. Limit cycles are
shown for various values of the electric field amplitude,
up to field amplitudes very close to the N?-to-D tran-
sition line. The time interval between the points shown
is 0.05 s. When ∆[fd] < 0 nematic domains melt, and
the orientational order parameter drops relatively fast
to a value close to the isotropic value λ = 1/3. Re-
condensation occurs for these low degrees of orientational
order so that ∆[fd] becomes positive and nematic or-
der increases. Above the threshold value for the order
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parameter, dissociation of condensed ions takes places.
The accompanied decrease of the Debye length leads to
an increase of [fd]crit and hence to a decrease of ∆[fd].
When ∆[fd] becomes negative the cycle repeats itself.
This is the cycle that has been discussed on an intu-
itive level in section II. For field amplitudes close to
the transition line the cycling times become large. From
the form of the limit cycle in Fig.9a and the oscillatory
behaviour shown in Fig.7 for the smallest field ampli-
tude it can be concluded that the rate-limiting step is
the release of condensed ions just before the domain be-
comes unstable. When the number of dissociated ions
does not suffice to render the nematic unstable, the os-
cillations cease to occur, and the stable state is the N?-
phase. The divergence of the cycling time on approach
of the N?-to-D transition line that is observed experi-
mentally is also seen in the theory, as shown in Fig.9b.
The data points correspond to the limit cycles shown in
Fig.9a, while the solid line is the power law dependance
τ = 2.20 + 0.18 × ( E − 0.300 )−1.15 for the cycling time
τ . The exponent 1.15 and the saturation cycling time at
high field strengths of 2.2 s are in accordance with values
found in experiments.

VIII. SUMMARY AND CONCLUSIONS

In a recent experiment where an oscillating external
electric field is applied to a dispersion of rod-like colloids
(fd-viruses) in the isotropic-nematic biphasic region, a
dynamical state is observed [30, 31]. In this dynamical
state, nematic domains melt and form on a seconds time
scale. The origin of the dynamical state is attributed to
the cyclic dissociation and association of condensed ions.
When a nematic domain is aligned along the electric-field
direction, the layer of condensed ions of each rod-like col-
loid is polarized, leading to an electric field perpendicu-
lar to the long axes of the rods that drives the condensed
ions into solution. This leads to an increase of the ionic
strength that renders the nematic domain unstable as the
Debye length, and thereby the effective concentration, is
decreased. The nematic domain thus melts, so that the
alignment along the electric field is lost, leading to asso-
ciation of condensed ions. The subsequent increase of the
effective concentration renders the molten isotropic state
meta-stable. A nematic domain is thus formed which
aligns along the field direction, leading again to release
of condensed ions. This cycle of increased and decreased
ionic strength is at the origin of the dynamical state.

A quantitative theory is developed that describes the
melting of the nematic state. This theory is based on
the Smoluchowski equation, including the field-induced
rod-rod interactions and torques. These torques and
rod-rod interactions are obtained from a theory for the
polarization of the layer condensed ions, where it is as-
sumed that the ions are essentially constrained to move
over the surface of the rod-like colloids. An empirical
equation of motion is used that describes the growth of

nematic domains, based on what is observed in simula-
tions in the absence of an external field [78], and a simple
model is proposed for the field-induced dissociation and
association of condensed ions. A comparison is made
with experiments for two fd-virus concentrations. The
numerical solution of the coupled equations of motion
reproduce the experimentally observed characteristics of
the dynamical state, including the location of the tran-
sition line from the chiral-nematic state to the dynam-
ical state in the field-amplitude versus frequency plane,
and the power-law divergence of cycling-time for melting
and forming of domains on approach of the transition
line. In forthcoming work we plan to compare the present
theory with experiments at different ionic strengths and
fd-concentrations.

The release of condensed ions on increasing the field
amplitude also explains the N -to-N? transition, where
the normal (non-chiral) nematic transforms to a chiral
nematic. At low ionic strength, the helical nature of
the core of the fd-virus particles is screened by the rel-
atively long-ranged electrostatic interactions, leading to
a non-chiral nematic state. As the field amplitude is in-
creased, the accompanied release of condensed ions leads
to a decrease of the Debye length, so that the core-core
interactions become significant. The helical structure of
the fd-cores now gives rise to a chiral nematic, which is
the equilibrium nematic state at higher ionic strengths
in the absence of an electric field. Within the N? phase
the ionic strength is not large enough to render the ne-
matic unstable. This occurs once the dynamical state is
entered.

There are three points where the present theory can be
improved. First of all, the nematic-domain growth could
be analyzed on the basis of the Smoluchowski equation as
well. This requires the extension of the Smoluchowski ap-
proach to include higher-order contributions in orienta-
tional order, which is necessary to describe growth kine-
tics from the meta-stable state. Secondly, we used a sim-
ple model for the dissociation/association of condensed
ions. There is so far no (Poisson-Boltzmann) theory
that quantitatively describes the dissociation/association
of condensed ions due to electric-field induced polariza-
tion. Thirdly, the present theory neglects spatial gra-
dients in orientational order, and is therefore not ca-
pable of predicting the domain-size dependence on the
field amplitude and frequency, which is found in Ref.[32]
to diverge at the critical point CP in Fig.1. In princi-
ple such gradients contributions can be included in the
Smoluchowski-equation approach. Possible alternatives
to a Smoluchowski-equation and Poisson-Boltzmann ap-
proach to address these issues could be an analysis
based on Ornstein-Zernike integral equations for nemat-
ics with an appropriate closure relation (see, for exam-
ple Refs.[84, 85]), or a dynamical density-functional ap-
proach (see, for example, Refs.[86–88]).
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Appendix A: Approximate evaluation of V eff
hc

In order to evaluate the R-integral in eq.(34), the co-
ordinates {α, x, x ′} are introduced,

R(α, x, x ′) = α d
û× û ′

| û× û ′ | + 1
2
Lx û + 1

2
Lx ′ û ′ .

The new integration variables α, x and x ′ vary within
(−1, 1). The Jacobian of the coordinate transformation
is d (L/2)2 | û× û

′ |, so that,

β V eff
hc (û, t) = 2 dL2 ρ̄

∮
dû ′ | û× û ′ | P (û ′, t) . (51)

The cross product is expanded in terms of Legendre poly-
nomials P2n(x), with x = û · û ′,

| û× û ′ | =
√

1− x2

=
π

4
P0(x)− 5π

32
P2(x)− 9π

256
P4(x) + · · · . (52)

Since P2 is on average first order in the orientational
order parameter for both û and û ′, it is in total of second
order. Similarly, P4 is of fourth order and is therefore
neglected. Hence, using that P0(x) = 1 and P2(x) =
1
2

(
3 x2 − 1

)
, it is found that with the neglect of fourth

order contributions,

| û× û ′ | = 21π

64
− 15π

64
ûû : û ′û ′ .

Substitution into eq.(51) leads to eq.(37).

Appendix B: Approximate evaluation of V eff
Q

In order to evaluate the potential V eff
Q in eq.(35),

the R-integral is evaluated in terms of the coordinates
{α, x, x ′}, defined as,

R(α, x, x ′) = α κ−1 û× û ′

| û× û ′ | + 1
2
Lx û + 1

2
Lx ′ û ′ .

The variable α ranges from (−∞,−κ d) and (κ d,∞) for
non core-overlap, while −1 < x, x ′ < 1. The latter as-
sures that α0 and β0 in eqs.(18,19) remain within the
range (−p/2, p/2). The Jacobian of the transformation
to these new coordinates is equal to κ−1 (L/2)2 | û× û

′ |.
It is readily verified from eq.(23) that,

S1 = Ω x ,

S2 = −Ωx ′ .

Hence, from eq.(35),

β V eff
Q (û, t) =

L2

2 κ
ρ̄

∮
dû′ | û× û ′ | P (û ′, t)

×
∫ 1

−1

dx

∫ 1

−1

dx′
∫ ∞

κ d

dα [1− exp {−A exp{−α}/α}] ,

where,

A =
1

| û× û ′ | {KQ (53)

− 1
2
KE E2

0 ûz û′z [ G(Ωx)G(Ωx′) + H(Ωx)H(Ωx′) ]
}

.

We thus have to find an approximation for the integral,

I(A) ≡
∫ ∞

κ d

dα [1− exp {−A exp{−α}/α}] (54)

≈ −κ d+
∫ ∞

0

dα [1− exp {−A exp{−α}/α}] .

For the case of thick double layers, typical values of A
are large due to overlap of double layers of several beads.
We thus have to find an approximation for this integral
for large values of A. For thin double layers, where the
interaction between the two sections of the cores of the
two rods on closest approach can be approximated as two
flat plates, the interaction potential ”per bead-pair” is
equal to A exp{−α}, where α is the distance between the
two surfaces, instead of A exp{−α}/α for the thick dou-
ble layers under consideration here. The corresponding
integral for the effective potential in the Smoluchowski
equation for thin double layers is,

∫ ∞

0

dα [ 1− exp {−A exp{−α} } ] ≈ ln{A}+ γE ,

for thin double layers ,

where γE = 0.5772 · · · is Euler’s constant. The approxi-
mation on the right hand-side is an asymptotic expansion
for large values of A, and is accurate to within 1 % for
A > 2 [72–75]. The reason why the leading term for
large values of A scales like ln{A} is that the combi-
nation A exp{−α} in the exponent is order unity when
α . ln{A}, and rapidly tends to zero for larger values of
α. In a very crude approximation one could replace the
integrand by a step function that is unity for α < ln{A}
and zero otherwise, which indeed leads to the leading
order ∼ ln{A} contribution. Similar to the case of a
thin double layer, we can replace the integrand in eq.(54)
by a step function which jumps from unity to zero for
A exp{−α}/α = 1. The iterated solution of this equa-
tion is,

α = ln{A/ ln{A/ ln{A/ · · · }}}
= ln{A} − ln{ln{A}}+ ln{ln{ln{A}}} − · · · .

In analogy with the thin double layer, we infer that
I(A) ≈ constant+ ln{A/ ln{A/ ln{A/ · · · }}}. By numer-
ical integration, it is found that to first iteration,

I(A) ≈ ln{A}+ C − κ d , (55)

where C = − 3
4 , while to second iteration,

I(A) ≈ ln{A} − ln{ln{A}}+ C ′ − κ d , (56)

where C ′ = π
4 . The exact value if I(A) as obtained

by numerical integration is plotted in Fig.10 (the solid
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FIG. 10: The integral in eq.(54) (the solid line), the first
iterated approximation (55) (the dotted line), and the second
iterated approximation (56) (the dashed-dotted line). For this
numerical comparison we took κd = 0 in these plots.

line), together with the approximations (55,56) (the dot-
ted and dashed-dotted lines, respectively). Note that
the constant A for thick double layers is generally much
larger than for thin double layers, since more ”beads”
interact simultaneously in the former case, as quantified
by the prefactor 1/(κ a)2 > 1 in eq.(14). For the semi-
quantitative description we will be satisfied with the first-
order iterative approximation in eq.(55).

We thus arrive at,

β V eff
Q (û, t) =

L2

2 κ
ρ̄

∮
dû′ | û× û ′ | P (û ′, t)

×
∫ 1

−1

dx

∫ 1

−1

dx′ [ ln{A}+ C − κ d ] .

From the definitions (22,25), with typical parameters
that apply for fd-virus rods, we have KE/KQ ¿ 1 up
to very high degrees of condensation, so that,

KQÀ 1
2
KEE2

0 | ûzû
′
z [G(Ωx)G(Ωx′)+H(Ωx)H(Ωx′)] | ,

and we can approximate, from eq.(53),

ln{A} ≈ − ln{| û× û ′ |}+ ln{KQ} (57)

− KE

2 KQ
E2
0 ûz û′z [G(Ωx) G(Ωx′) + H(Ωx) H(Ωx′) ]

− 1
2

[
KE

2KQ

]2

E4
0 [ûzû

′
z]

2 [G(Ωx)G(Ωx′)+H(Ωx)H(Ωx′)]2 .

The reason why the first two terms in the expansion of
the logarithm are included will become clear later. The

effective potential therefore consists of three distinct con-
tributions,

V eff
Q (û, t) = ∆V eff

Q,hc(û, t) + V eff
twist(û, t) + V eff

pol (û, t) ,

where the first term is equal to,

∆V eff
Q,hc(û, t) = [ ln{KQ} − κ d + C ]

2 L2

κ
ρ̄

×
∮

dû′ | û× û ′ | P (û ′, t) ,

the second contribution is given by,

β V eff
twist(û, t) = − 2 L2

κ
ρ̄

×
∮

dû′ | û× û ′ | ln{| û× û ′ |}P (û ′, t) ,

and,

β V eff
pol (û, t) = − L2

4 κ
ρ̄

[
KE

2 KQ

]2

E4
0

×
∮

dû′ | û× û ′ | [ ûz û′z ]2 P (û ′, t)

×
∫ 1

−1

dx

∫ 1

−1

dx′ [ G(Ωx)G(Ωx′) + H(Ωx)H(Ωx′) ]2 .(58)

Note that the term ∼ E2
0 in eq.(57) vanishes upon inte-

gration, which is the reason that the second order term
∼ E4

0 is included.
The potential ∆V eff

Q,hc has the same form as the ef-
fective hard-core interaction energy (see eq.(51)). This
contribution can thus be used, in the spirit of Onsager
[72, 73], to define an ”effective core thickness” deff . The
interaction energy V eff

hc + ∆V eff
Q,hc can be written as a

hard-core interaction potential, with a prefactor equal to
2 deff L2 instead of 2 d L2 as for a pure hard-core inter-
action potential in eq.(51), with,

2 deff L2 = 2 d L2 + [ ln{KQ} − κ d + C ]
2 L2

κ
,

or,

deff

d
=

1
κ d

[ ln{KQ}+ C ] .

This is a semi-quantitative extension to thick double lay-
ers of Onsager’s expression for the effective diameter for
thin double layers [72, 73].

An asymptotic expression for the effective diameter
for line charges (representing worm-like micelles) can be
found in Ref.[76]. The effective diameter is also found to
scale like the Debye length, with a quite similar prefactor
that scales with the logarithm of the charge of the rod
(see eqs.(11,34) in Ref.[76]).

The potential V eff
twist describes the ”twist effect” [74,

75]. This potential is expanded with the neglect of
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fourth order terms in the orientational order parameter,
by means of the Legendre polynomial expansion, with
x = û · û ′,

| û× û ′ | ln{| û× û ′ |} =
√

1− x2 ln
√

1− x2

=
π

4

[
1
2
− ln 2

]
P0(x)− 5π

32

[
5
4
− ln 2

]
P2(x) + · · · .

As before, the contributions ”· · · ” are on average of
fourth order in the orientational order parameter (second
order with respect to ûû and û ′û ′), which are neglected.
Hence,

| û × û ′ | ln{| û× û ′ |} =
21π

64

[
57
84
− ln 2

]
− 15π

64

[
5
4
− ln 2

]
ûû : û ′û ′ ,

so that,

β V eff
twist(û, t) = −21 π

32

[
57
84
− ln 2

]
L2

κ
ρ̄

+
15π

32

[
5
4
− ln 2

]
L2

κ
ρ̄

∮
dû′ ( ûû : û ′û ′ ) P (û ′, t)

= −21π

32

[
57
84
−ln 2

]
L2

κ
ρ̄ +

15π

32

[
5
4
−ln 2

]
L2

κ
ρ̄ ûû : S .

Finally the potential V eff
pol describes the effective in-

teractions as induced by the field, through polarization
charges. The x- and x ′-integrations in eq.(58) give rise
to a factor equal to,

[
M2(Ω) + N2(Ω) + 1

2
Q2(Ω)

]
,

where,

M(Ω) =
∫ 1

−1

dx G2(Ω x) ,

N(Ω) =
∫ 1

−1

dx H2(Ω x) ,

Q(Ω) = 2
∫ 1

−1

dx G(Ω x)H(Ω x) .

These functions are accurately approximated by,

M(Ω) = 4
3
h̃(Ω) ,

N(Ω) = 6
7
Ω 4 h̃(Ω) ,

Q(Ω) = 50
23

Ω 2 h̃(Ω) ,

where h̃(Ω) is equal to,

h̃(Ω) =
1
Ω

sin{Ω}+ sinh{Ω}
[ cos{2Ω}+ cosh{2Ω} ]2

,

so that,

βV eff
pol (û, t) = − L2

9κ
ρ̄

[
K

KQ

]2

h̃2(Ω)
[
1+ 4

3
Ω 4+ 2

5
Ω 8

] E4
0

×
∮

dû′ | û× û ′ | [ ûz û′z ]2 P (û ′, t) .

With the expansion (53), and with the neglect of terms
of order λ4, it is thus found that,

β V eff
pol (r, û) = − 7π

192
ρ̄
L2

κ

[
K

KQ

]2

h̃2(Ω)
[
1+ 4

3
Ω 4+ 2

5
Ω 8

] E4
0

×
(
Ê0 Ê0 : û û

) (
Ê0 Ê0 : S(r, t)

)
,

where a small term that on average is ∼ S(4) ¯ S(4) has
been neglected.

This concludes the calculation of the instantaneous ef-
fective potentials.

Appendix C : Derivation of the equation of motion
for the order parameter tensor S(t)

For the evaluation of the equation of motion for S, two
types of integrals are encountered,

I
(1)
ij = Mpq

∮
dû ûiûj R̂n

[
ρ(r, û) R̂n ûpûq

]
,

I
(2)
ij = Mpqrs

∮
dû ûiûj R̂n

[
ρ(r, û) R̂n ûpûqûrûs

]
,

where R̂n is the nth component of the rotation operator,
Mpq and Mpqrs are arbitrary matrices, while summation
over repeated indices is understood. Using Stokes’s theo-
rem in the form (with f(û) and h(û) differentiable func-
tions of û),

∮
dû f(û) R̂h(û) = −

∮
dû h(û) R̂ f(û) , (59)

and using the identity,
[
R̂nûiûj

]
R̂n(· · · ) = {ûi∂j + ûj∂i − 2ûiûj ûn∂n} (· · · ) ,

these two integrals are evaluated as,

I
(1)
ij = −sin Mnj −Min snj − sjn Mni −Mjn sni

+4 s
(4)
ijnm Mmn ,

I
(2)
ij = −s

(4)
ikmn Mjnmk − s

(4)
iknm Mnjmk − s

(4)
ikmn Mnmjk

−s
(4)
ikmn Mnmkj − s

(4)
jkmn Minmk − s

(4)
jknm Mnimk

−s
(4)
jkmn Mnmik − s

(4)
jkmn Mnmki + 8 s

(6)
ijklmn Mnmlk .

Multiplying both sides of the Smoluchowski equation
with ûû and integration, and applying these two iden-
tities, it is found that the evolution equation of S can be
written as,

∂ S
∂ t

= ∆̃id + ∆̃Q,hc + ∆̃twist + ∆̃pol + ∆̃torque ,

where ∆̃id is the contribution from free diffusion, ∆̃Q,hc

stems from hard-core interactions (with an effective hard-
core diameter), ∆̃twist is the twist contribution, ∆̃pol is
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the contribution from interactions between polarization
charges, and ∆̃torque is the contribution from single par-
ticle torques. The free-diffusion contribution is equal to,

∆̃id = 6 Dr ρ̄
[

1
3
Î− S

]
.

The effective hard-core contribution ∆̃Q,hc is equal to,

∆̃Q,hc =
15π

8
deff L2 Dr ρ̄2

{
S · S− S(4) : S

}
.

The twist-contribution similarly found to be equal to,

∆̃twist = −15π

8

[
5
4
−ln 2

]
L2

κ
Dr ρ̄2

{
S · S−S(4) : S

}
,

and the polarization-charge interaction contribution is,

∆̃pol =
7π

48
L2

κ
ρ̄2

[
KE

KQ

]2

h(Ω) E4
0 Dr

×
(
S : Ê0Ê0

) {
Ŝ

(
S · Ê0Ê0

)
−

(
S(4) : Ê0Ê0

)}
,

where the symmetrizing operator Ŝ is defined as,

ŜM = 1
2

[
M + MT

]
,

where ”T” stands for ”transpose”.

The contribution ∆̃torque from single-particle torques
is evaluated as follows. Multiplying the Smoluchowski
equation (28) by ûû and integration with respect to û,
using Stokes’s theorem in the form (59), and using that,

(
û · Ê0

) (
û× Ê0

)
· R̂ (û û) =

2 Ŝ
(
û û · Ê0Ê0

)
− 2

(
û · Ê0

)2

û û .

it is found that,

∆̃torque =
π

4
β L3 ρ̄ ε F1(Ω) F3 E2

0 Dr

×
{
Ŝ

(
S · Ê0Ê0

)
− S(4) : Ê0Ê0

}
.

To obtain a closed equation of motion for S, contribu-
tions containing S(4) must be expressed in terms of S.
We will use the closure relation (41) for S(4) : M, with
M an arbitrary matrix.

Introducing the effective volume fraction, ϕeff =
(π/4) d 2

eff L ρ̄ and the frequency independent constant
F̃ = F1(Ω) F3/I(Ω) (with F1(Ω), F3, and I(Ω) de-
fined in eq.(9)) thus leads to the equation of motion in
eqs.(43,44).
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