000151480 001__ 151480
000151480 005__ 20240712112843.0
000151480 0247_ $$2doi$$a10.1016/j.ssi.2014.01.020
000151480 0247_ $$2WOS$$aWOS:000338810500155
000151480 0247_ $$2altmetric$$aaltmetric:21823184
000151480 037__ $$aFZJ-2014-01418
000151480 041__ $$aEnglish
000151480 082__ $$a530
000151480 1001_ $$0P:(DE-HGF)0$$aSadykov$$b0$$eCorresponding author
000151480 245__ $$aOxygen mobility and surface ractivity of PrNi1 − xCoxO3+δ–Ce0.9Y0.1O2 − δ cathode nanocomposites
000151480 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2014
000151480 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1407330574_13615
000151480 3367_ $$2DataCite$$aOutput Types/Journal article
000151480 3367_ $$00$$2EndNote$$aJournal Article
000151480 3367_ $$2BibTeX$$aARTICLE
000151480 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000151480 3367_ $$2DRIVER$$aarticle
000151480 520__ $$aCobalt-doped praseodymiumnickelate PrNi1 − xCoxO3 − δ (PNCx) and Y-doped ceria Ce0.9Y0.1O2 − δ (YDC) oxideswere synthesized via Pechini route. PNCx+YDC composites were prepared via ultrasonic dispersion of the mixtureof perovskite and fluorite nanopowders in isopropanol with addition of polyvinyl butyral followed by drying,pressing and sintering at 1300 °C. The oxygenmobility and reactivity of powdered PNCx and composites obtainedby crushing and milling of dense pellets were estimated by O2-TPD and oxygen isotope exchange with 18O2 andC18O2 using both static and flow (SSITKA) reactors in isothermal and temperature-programmed (TPIE) modes.For PNCx samples sintered at 1300 °C comprised of (Ni,Co)O and Ruddlesden–Popper type phases (Pr2NiO4,Pr4(Ni,Co)3O10), the oxygenmobility and reactivity tend to decrease with Co content. For composites, the oxygenmobility ismuch higher due to Pr transfer into YDC thus disordering perovskite-like and fluorite-like phases. TPIEC18O2 SSITKA experiments combined with SIMS analysis of the depth profiles of Pr18O and Ce18O suggest thatfast oxygen diffusion in composites is provided by domains of disordered perovskite-like phases as well as Pr,Y-doped ceria. For best composites, the value of the oxygen chemical diffusion coefficient estimated by theweight relaxation technique exceeds that of well known LSFC–GDC composite.
000151480 536__ $$0G:(DE-HGF)POF2-152$$a152 - Renewable Energies (POF2-152)$$cPOF2-152$$fPOF II$$x0
000151480 536__ $$0G:(DE-HGF)POF2-123$$a123 - Fuel Cells (POF2-123)$$cPOF2-123$$fPOF II$$x1
000151480 7001_ $$0P:(DE-HGF)0$$aEremeev, N$$b1
000151480 7001_ $$0P:(DE-HGF)0$$aAlikina, G.$$b2
000151480 7001_ $$0P:(DE-HGF)0$$aSadovskaya, E.$$b3
000151480 7001_ $$0P:(DE-HGF)0$$aMuzykantov, V.$$b4
000151480 7001_ $$0P:(DE-HGF)0$$aPelipenko, V.$$b5
000151480 7001_ $$0P:(DE-HGF)0$$aBrobin, A.$$b6
000151480 7001_ $$0P:(DE-HGF)0$$aKrieger, T.$$b7
000151480 7001_ $$0P:(DE-HGF)0$$aBelyaev, V.$$b8
000151480 7001_ $$0P:(DE-HGF)0$$aIvanov, V.$$b9
000151480 7001_ $$0P:(DE-HGF)0$$aIshchenko, A.$$b10
000151480 7001_ $$0P:(DE-HGF)0$$aRogov, V.$$b11
000151480 7001_ $$0P:(DE-HGF)0$$aUlihin, A.$$b12
000151480 7001_ $$0P:(DE-HGF)0$$aUvarov, N.$$b13
000151480 7001_ $$0P:(DE-HGF)0$$aOkhulupin, Yu.$$b14
000151480 7001_ $$0P:(DE-Juel1)130445$$aMertens, Josef$$b15$$ufzj
000151480 7001_ $$0P:(DE-Juel1)129936$$aVinke, Izaak C.$$b16$$ufzj
000151480 773__ $$0PERI:(DE-600)1500750-9$$a10.1016/j.ssi.2014.01.020$$p707–712$$tSolid state ionics$$v262$$x1872-7689$$y2014
000151480 8564_ $$uhttps://juser.fz-juelich.de/record/151480/files/FZJ-2014-01418.pdf$$yRestricted
000151480 909CO $$ooai:juser.fz-juelich.de:151480$$pVDB
000151480 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130445$$aForschungszentrum Jülich GmbH$$b15$$kFZJ
000151480 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129936$$aForschungszentrum Jülich GmbH$$b16$$kFZJ
000151480 9132_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000151480 9131_ $$0G:(DE-HGF)POF2-152$$1G:(DE-HGF)POF2-150$$2G:(DE-HGF)POF2-100$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lTechnologie, Innovation und Gesellschaft$$vRenewable Energies$$x0
000151480 9131_ $$0G:(DE-HGF)POF2-123$$1G:(DE-HGF)POF2-120$$2G:(DE-HGF)POF2-100$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lRationelle Energieumwandlung und -nutzung$$vFuel Cells$$x1
000151480 9141_ $$y2014
000151480 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000151480 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000151480 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000151480 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000151480 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000151480 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000151480 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000151480 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000151480 915__ $$0StatID:(DE-HGF)1020$$2StatID$$aDBCoverage$$bCurrent Contents - Social and Behavioral Sciences
000151480 920__ $$lyes
000151480 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
000151480 980__ $$ajournal
000151480 980__ $$aVDB
000151480 980__ $$aI:(DE-Juel1)IEK-9-20110218
000151480 980__ $$aUNRESTRICTED
000151480 981__ $$aI:(DE-Juel1)IET-1-20110218