001     151480
005     20240712112843.0
024 7 _ |a 10.1016/j.ssi.2014.01.020
|2 doi
024 7 _ |a WOS:000338810500155
|2 WOS
024 7 _ |a altmetric:21823184
|2 altmetric
037 _ _ |a FZJ-2014-01418
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Sadykov
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Oxygen mobility and surface ractivity of PrNi1 − xCoxO3+δ–Ce0.9Y0.1O2 − δ cathode nanocomposites
260 _ _ |a Amsterdam [u.a.]
|c 2014
|b Elsevier Science
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1407330574_13615
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a Cobalt-doped praseodymiumnickelate PrNi1 − xCoxO3 − δ (PNCx) and Y-doped ceria Ce0.9Y0.1O2 − δ (YDC) oxideswere synthesized via Pechini route. PNCx+YDC composites were prepared via ultrasonic dispersion of the mixtureof perovskite and fluorite nanopowders in isopropanol with addition of polyvinyl butyral followed by drying,pressing and sintering at 1300 °C. The oxygenmobility and reactivity of powdered PNCx and composites obtainedby crushing and milling of dense pellets were estimated by O2-TPD and oxygen isotope exchange with 18O2 andC18O2 using both static and flow (SSITKA) reactors in isothermal and temperature-programmed (TPIE) modes.For PNCx samples sintered at 1300 °C comprised of (Ni,Co)O and Ruddlesden–Popper type phases (Pr2NiO4,Pr4(Ni,Co)3O10), the oxygenmobility and reactivity tend to decrease with Co content. For composites, the oxygenmobility ismuch higher due to Pr transfer into YDC thus disordering perovskite-like and fluorite-like phases. TPIEC18O2 SSITKA experiments combined with SIMS analysis of the depth profiles of Pr18O and Ce18O suggest thatfast oxygen diffusion in composites is provided by domains of disordered perovskite-like phases as well as Pr,Y-doped ceria. For best composites, the value of the oxygen chemical diffusion coefficient estimated by theweight relaxation technique exceeds that of well known LSFC–GDC composite.
536 _ _ |a 152 - Renewable Energies (POF2-152)
|0 G:(DE-HGF)POF2-152
|c POF2-152
|f POF II
|x 0
536 _ _ |a 123 - Fuel Cells (POF2-123)
|0 G:(DE-HGF)POF2-123
|c POF2-123
|f POF II
|x 1
700 1 _ |a Eremeev, N
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Alikina, G.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Sadovskaya, E.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Muzykantov, V.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Pelipenko, V.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Brobin, A.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Krieger, T.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Belyaev, V.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Ivanov, V.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Ishchenko, A.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Rogov, V.
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Ulihin, A.
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Uvarov, N.
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Okhulupin, Yu.
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Mertens, Josef
|0 P:(DE-Juel1)130445
|b 15
|u fzj
700 1 _ |a Vinke, Izaak C.
|0 P:(DE-Juel1)129936
|b 16
|u fzj
773 _ _ |a 10.1016/j.ssi.2014.01.020
|0 PERI:(DE-600)1500750-9
|p 707–712
|t Solid state ionics
|v 262
|y 2014
|x 1872-7689
856 4 _ |u https://juser.fz-juelich.de/record/151480/files/FZJ-2014-01418.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:151480
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 15
|6 P:(DE-Juel1)130445
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 16
|6 P:(DE-Juel1)129936
913 2 _ |a DE-HGF
|b Forschungsbereich Energie
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-135
|2 G:(DE-HGF)POF3-100
|v Fuel Cells
|x 0
913 1 _ |a DE-HGF
|b Energie
|1 G:(DE-HGF)POF2-150
|0 G:(DE-HGF)POF2-152
|2 G:(DE-HGF)POF2-100
|v Renewable Energies
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
|l Technologie, Innovation und Gesellschaft
913 1 _ |a DE-HGF
|b Energie
|l Rationelle Energieumwandlung und -nutzung
|1 G:(DE-HGF)POF2-120
|0 G:(DE-HGF)POF2-123
|2 G:(DE-HGF)POF2-100
|v Fuel Cells
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
914 1 _ |y 2014
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1020
|2 StatID
|b Current Contents - Social and Behavioral Sciences
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-9-20110218
|k IEK-9
|l Grundlagen der Elektrochemie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-9-20110218
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IET-1-20110218


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21