000151550 001__ 151550
000151550 005__ 20210129213514.0
000151550 0247_ $$2doi$$a10.1038/nn.3662
000151550 0247_ $$2ISSN$$a1097-6256
000151550 0247_ $$2ISSN$$a1546-1726
000151550 0247_ $$2WOS$$aWOS:000333405300015
000151550 0247_ $$2altmetric$$aaltmetric:2157734
000151550 0247_ $$2pmid$$apmid:24584052
000151550 037__ $$aFZJ-2014-01451
000151550 082__ $$a590
000151550 1001_ $$0P:(DE-HGF)0$$aPannasch, Ulrike$$b0$$eCorresponding author
000151550 245__ $$aConnexin 30 sets synaptic strength by controlling astroglial synapse invasion
000151550 260__ $$aNew York, NY$$bNature America$$c2014
000151550 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1401861188_21130
000151550 3367_ $$2DataCite$$aOutput Types/Journal article
000151550 3367_ $$00$$2EndNote$$aJournal Article
000151550 3367_ $$2BibTeX$$aARTICLE
000151550 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000151550 3367_ $$2DRIVER$$aarticle
000151550 520__ $$aAstrocytes play active roles in brain physiology by dynamic interactions with neurons. Connexin 30, one of the two main astroglial gap-junction subunits, is thought to be involved in behavioral and basic cognitive processes. However, the underlying cellular and molecular mechanisms are unknown. We show here in mice that connexin 30 controls hippocampal excitatory synaptic transmission through modulation of astroglial glutamate transport, which directly alters synaptic glutamate levels. Unexpectedly, we found that connexin 30 regulated cell adhesion and migration and that connexin 30 modulation of glutamate transport, occurring independently of its channel function, was mediated by morphological changes controlling insertion of astroglial processes into synaptic clefts. By setting excitatory synaptic strength, connexin 30 plays an important role in long-term synaptic plasticity and in hippocampus-based contextual memory. Taken together, these results establish connexin 30 as a critical regulator of synaptic strength by controlling the synaptic location of astroglial processes.
000151550 536__ $$0G:(DE-HGF)POF2-331$$a331 - Signalling Pathways and Mechanisms in the Nervous System (POF2-331)$$cPOF2-331$$fPOF II$$x0
000151550 536__ $$0G:(DE-HGF)POF2-89571$$a89571 - Connectivity and Activity (POF2-89571)$$cPOF2-89571$$fPOF II T$$x1
000151550 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000151550 7001_ $$0P:(DE-HGF)0$$aFreche, Dominik$$b1
000151550 7001_ $$0P:(DE-HGF)0$$aDallérac, Glenn$$b2
000151550 7001_ $$0P:(DE-HGF)0$$aGhézali, Grégory$$b3
000151550 7001_ $$0P:(DE-HGF)0$$aEscartin, Carole$$b4
000151550 7001_ $$0P:(DE-HGF)0$$aEzan, Pascal$$b5
000151550 7001_ $$0P:(DE-HGF)0$$aCohen-Salmon, Martine$$b6
000151550 7001_ $$0P:(DE-HGF)0$$aBenchenane, Karim$$b7
000151550 7001_ $$0P:(DE-HGF)0$$aAbudara, Veronica$$b8
000151550 7001_ $$0P:(DE-Juel1)138936$$aDufour, Amandine$$b9
000151550 7001_ $$0P:(DE-Juel1)131696$$aLübke, Joachim$$b10
000151550 7001_ $$0P:(DE-HGF)0$$aDéglon, Nicole$$b11
000151550 7001_ $$0P:(DE-HGF)0$$aKnott, Graham$$b12
000151550 7001_ $$0P:(DE-HGF)0$$aHolcman, David$$b13
000151550 7001_ $$0P:(DE-HGF)0$$aRouach, Nathalie$$b14$$eCorresponding Author
000151550 773__ $$0PERI:(DE-600)1494955-6$$a10.1038/nn.3662$$n4$$p549-558$$tNature neuroscience$$v17$$x1546-1726$$y2014
000151550 8564_ $$uhttp://www.nature.com/neuro/journal/vaop/ncurrent/full/nn.3662.html
000151550 8564_ $$uhttps://juser.fz-juelich.de/record/151550/files/FZJ-2014-01451.pdf$$yRestricted$$zPublished final document.
000151550 909CO $$ooai:juser.fz-juelich.de:151550$$pVDB
000151550 9141_ $$y2014
000151550 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000151550 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000151550 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000151550 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000151550 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000151550 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000151550 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000151550 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000151550 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000151550 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000151550 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000151550 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000151550 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131696$$aForschungszentrum Jülich GmbH$$b10$$kFZJ
000151550 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131696$$aForschungszentrum Jülich GmbH$$b10$$kFZJ
000151550 9132_ $$0G:(DE-HGF)POF3-571$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vConnectivity and Activity$$x0
000151550 9131_ $$0G:(DE-HGF)POF2-331$$1G:(DE-HGF)POF2-330$$2G:(DE-HGF)POF2-300$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lFunktion und Dysfunktion des Nervensystems$$vSignalling Pathways and Mechanisms in the Nervous System$$x0
000151550 9131_ $$0G:(DE-HGF)POF2-89571$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vConnectivity and Activity$$x1
000151550 9201_ $$0I:(DE-Juel1)INM-2-20090406$$kINM-2$$lMolekulare Organisation des Gehirns$$x0
000151550 980__ $$ajournal
000151550 980__ $$aVDB
000151550 980__ $$aI:(DE-Juel1)INM-2-20090406
000151550 980__ $$aUNRESTRICTED