000151565 001__ 151565
000151565 005__ 20210129213516.0
000151565 0247_ $$2doi$$a10.1088/0957-4484/25/13/135203
000151565 0247_ $$2ISSN$$a1361-6528
000151565 0247_ $$2ISSN$$a0957-4484
000151565 0247_ $$2WOS$$aWOS:000332858700004
000151565 037__ $$aFZJ-2014-01458
000151565 082__ $$a530
000151565 1001_ $$0P:(DE-Juel1)128645$$aWeis, Karl$$b0$$eCorresponding author
000151565 245__ $$aQuantum dots in InAs nanowires induced by surface potential fluctuations
000151565 260__ $$aBristol$$bIOP Publ.$$c2014
000151565 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1394438778_19322
000151565 3367_ $$2DataCite$$aOutput Types/Journal article
000151565 3367_ $$00$$2EndNote$$aJournal Article
000151565 3367_ $$2BibTeX$$aARTICLE
000151565 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000151565 3367_ $$2DRIVER$$aarticle
000151565 500__ $$3POF3_Assignment on 2016-02-29
000151565 520__ $$aBack-gated InAs nanowire field-effect transistors are studied focusing on the formation of intrinsic quantum dots, i.e. dots not intentionally defined by electrodes. Such dots have been studied before, but the suggested explanations for their origin leave some open questions, which are addressed here. Stability diagrams of samples with different doping levels are recorded at electron temperatures below 200 mK, allowing us to estimate the number and size of the dots as well as the type of connection, i.e. in series or in parallel. We discuss several potential physical origins of the dots and conclude that they are most probably induced by potential fluctuations at the nanowire surface. Additionally, we show that via gate voltage and doping, the samples can be tuned to different regimes of Coulomb blockade.
000151565 536__ $$0G:(DE-HGF)POF2-421$$a421 - Frontiers of charge based Electronics (POF2-421)$$cPOF2-421$$fPOF II$$x0
000151565 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000151565 7001_ $$0P:(DE-Juel1)138778$$aWirths, Stephan$$b1
000151565 7001_ $$0P:(DE-Juel1)144014$$aWinden, Andreas$$b2
000151565 7001_ $$0P:(DE-HGF)0$$aSladek, Kamil$$b3
000151565 7001_ $$0P:(DE-Juel1)125593$$aHardtdegen, Hilde$$b4
000151565 7001_ $$0P:(DE-Juel1)128608$$aLüth, Hans$$b5
000151565 7001_ $$0P:(DE-Juel1)125588$$aGrützmacher, Detlev$$b6
000151565 7001_ $$0P:(DE-Juel1)128634$$aSchäpers, Thomas$$b7
000151565 773__ $$0PERI:(DE-600)1362365-5$$a10.1088/0957-4484/25/13/135203$$gVol. 25, no. 13, p. 135203 -$$n13$$p135203 $$tNanotechnology$$v25$$x1361-6528$$y2014
000151565 8564_ $$uhttp://stacks.iop.org/0957-4484/25/135203
000151565 8564_ $$uhttps://juser.fz-juelich.de/record/151565/files/FZJ-2014-01458.pdf$$yRestricted$$zPublished final document.
000151565 909CO $$ooai:juser.fz-juelich.de:151565$$pVDB
000151565 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128645$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000151565 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138778$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000151565 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144014$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000151565 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125593$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000151565 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128608$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000151565 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125588$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000151565 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128634$$aForschungszentrum Jülich GmbH$$b7$$kFZJ
000151565 9132_ $$0G:(DE-HGF)POF3-529H$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vAddenda$$x0
000151565 9131_ $$0G:(DE-HGF)POF2-421$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vFrontiers of charge based Electronics$$x0
000151565 9141_ $$y2014
000151565 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000151565 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000151565 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000151565 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000151565 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000151565 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000151565 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000151565 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000151565 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000151565 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000151565 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000151565 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000151565 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000151565 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000151565 980__ $$ajournal
000151565 980__ $$aVDB
000151565 980__ $$aUNRESTRICTED
000151565 980__ $$aI:(DE-Juel1)PGI-9-20110106
000151565 980__ $$aI:(DE-82)080009_20140620