000015157 001__ 15157
000015157 005__ 20210129210622.0
000015157 0247_ $$2DOI$$a10.1063/1.3565018
000015157 0247_ $$2WOS$$aWOS:000289151900055
000015157 0247_ $$2Handle$$a2128/7291
000015157 037__ $$aPreJuSER-15157
000015157 041__ $$aeng
000015157 082__ $$a530
000015157 084__ $$2WoS$$aPhysics, Fluids & Plasmas
000015157 1001_ $$0P:(DE-HGF)0$$aEffenberger, F.$$b0
000015157 245__ $$aNumerical simulation of current sheet formation in a quasiseparatrix layer using adaptive mesh refinement
000015157 260__ $$a[S.l.]$$bAmerican Institute of Physics$$c2011
000015157 300__ $$a032902
000015157 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000015157 3367_ $$2DataCite$$aOutput Types/Journal article
000015157 3367_ $$00$$2EndNote$$aJournal Article
000015157 3367_ $$2BibTeX$$aARTICLE
000015157 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000015157 3367_ $$2DRIVER$$aarticle
000015157 440_0 $$04939$$aPhysics of Plasmas$$v18$$x1070-664X$$y3
000015157 500__ $$aThis work was supported by Deutsche Forschungsgemeinschaft through Forschergruppe FOR 1048 and by the European Commission through the Solaire network (Grant No. MTRN-CT-2006-035484).
000015157 520__ $$aThe formation of a thin current sheet in a magnetic quasiseparatrix layer (QSL) is investigated by means of numerical simulation using a simplified ideal, low-beta, MHD model. The initial configuration and driving boundary conditions are relevant to phenomena observed in the solar corona and were studied earlier by Aulanier et al. [Astron. Astrophys. 444, 961 (2005)]. In extension to that work, we use the technique of adaptive mesh refinement (AMR) to significantly enhance the local spatial resolution of the current sheet during its formation, which enables us to follow the evolution into a later stage. Our simulations are in good agreement with the results of Aulanier et al. up to the calculated time in that work. In a later phase, we observe a basically unarrested collapse of the sheet to length scales that are more than one order of magnitude smaller than those reported earlier. The current density attains correspondingly larger maximum values within the sheet. During this thinning process, which is finally limited by lack of resolution even in the AMR studies, the current sheet moves upward, following a global expansion of the magnetic structure during the quasistatic evolution. The sheet is locally one-dimensional and the plasma flow in its vicinity, when transformed into a comoving frame, qualitatively resembles a stagnation point flow. In conclusion, our simulations support the idea that extremely high current densities are generated in the vicinities of QSLs as a response to external perturbations, with no sign of saturation. (C) 2011 American Institute of Physics. [doi:10.1063/1.3565018]
000015157 536__ $$0G:(DE-Juel1)FUEK411$$2G:(DE-HGF)$$aScientific Computing (FUEK411)$$cFUEK411$$x0
000015157 536__ $$0G:(DE-HGF)POF2-411$$a411 - Computational Science and Mathematical Methods (POF2-411)$$cPOF2-411$$fPOF II$$x1
000015157 588__ $$aDataset connected to Web of Science
000015157 650_7 $$2WoSType$$aJ
000015157 7001_ $$0P:(DE-HGF)0$$aThust, K.$$b1
000015157 7001_ $$0P:(DE-Juel1)132044$$aArnold, L.$$b2$$uFZJ
000015157 7001_ $$0P:(DE-HGF)0$$aGrauer, R.$$b3
000015157 7001_ $$0P:(DE-HGF)0$$aDreher, J.$$b4
000015157 773__ $$0PERI:(DE-600)1472746-8$$a10.1063/1.3565018$$gVol. 18, p. 032902$$p032902$$q18<032902$$tPhysics of plasmas$$v18$$x1070-664X$$y2011
000015157 8567_ $$uhttp://dx.doi.org/10.1063/1.3565018
000015157 8564_ $$uhttps://juser.fz-juelich.de/record/15157/files/FZJ-15157.pdf$$yPublished under German "Allianz" Licensing conditions on 2011-03-09. Available in OpenAccess from 2011-03-09$$zPublished final document.
000015157 8564_ $$uhttps://juser.fz-juelich.de/record/15157/files/FZJ-15157.jpg?subformat=icon-1440$$xicon-1440
000015157 8564_ $$uhttps://juser.fz-juelich.de/record/15157/files/FZJ-15157.jpg?subformat=icon-180$$xicon-180
000015157 8564_ $$uhttps://juser.fz-juelich.de/record/15157/files/FZJ-15157.jpg?subformat=icon-640$$xicon-640
000015157 909CO $$ooai:juser.fz-juelich.de:15157$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000015157 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000015157 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000015157 915__ $$0StatID:(DE-HGF)0520$$2StatID$$aAllianz-OA
000015157 9141_ $$y2011
000015157 9132_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000015157 9131_ $$0G:(DE-HGF)POF2-411$$1G:(DE-HGF)POF2-410$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lSupercomputing$$vComputational Science and Mathematical Methods$$x1
000015157 9201_ $$0I:(DE-Juel1)JSC-20090406$$gJSC$$kJSC$$lJülich Supercomputing Centre$$x0
000015157 970__ $$aVDB:(DE-Juel1)127826
000015157 980__ $$aVDB
000015157 980__ $$aConvertedRecord
000015157 980__ $$ajournal
000015157 980__ $$aI:(DE-Juel1)JSC-20090406
000015157 980__ $$aUNRESTRICTED
000015157 980__ $$aJUWEL
000015157 980__ $$aFullTexts
000015157 9801_ $$aFullTexts