001     15161
005     20240610120510.0
024 7 _ |a 10.1088/1367-2630/13/4/045020
|2 DOI
024 7 _ |a WOS:000289994700002
|2 WOS
024 7 _ |a 2128/28968
|2 Handle
037 _ _ |a PreJuSER-15161
041 _ _ |a eng
082 _ _ |a 530
084 _ _ |2 WoS
|a Physics, Multidisciplinary
100 1 _ |a Vliegenthart, G.A.
|b 0
|u FZJ
|0 P:(DE-Juel1)VDB61359
245 _ _ |a Compression, crumpling and collapse of spherical shells and capsules
260 _ _ |a [Bad Honnef]
|b Dt. Physikalische Ges.
|c 2011
300 _ _ |a 045020
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a New Journal of Physics
|x 1367-2630
|0 8201
|v 13
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a The deformation of thin spherical shells by applying an external pressure or by reducing the volume is studied by computer simulations and scaling arguments. The shape of the deformed shells depends on the deformation rate, the reduced volume V/V-0 and the Foppl-von Karman number gamma. For slow deformations the shell attains its ground state, a shell with a single indentation, whereas for large deformation rates the shell appears crumpled with many indentations. The rim of the single indentation undergoes a shape transition from smooth to polygonal for gamma similar or equal to 7000(Delta V/V-0)(-3/4). For the smooth rim the elastic energy scales like gamma(1/4) whereas for the polygonal indentation we find a much smaller exponent, even smaller than the exponent 1/6 that is predicted for stretching ridges. The relaxation of a shell with multiple indentations towards the ground state follows an Ostwald ripening type of pathway and depends on the compression rate and on the Foppl-von Karman number. The number of indentations decreases as a power law with time t following N-ind similar to t(-0.375) for gamma = 8 x 10(3) and gamma = 8 x 10(4) whereas for gamma = 8 x 10(5) the relaxation time is longer than the simulation time.
536 _ _ |a BioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung
|c P45
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK505
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
700 1 _ |a Gompper, G.
|b 1
|u FZJ
|0 P:(DE-Juel1)130665
773 _ _ |a 10.1088/1367-2630/13/4/045020
|g Vol. 13, p. 045020
|p 045020
|q 13<045020
|0 PERI:(DE-600)1464444-7
|t New journal of physics
|v 13
|y 2011
|x 1367-2630
856 7 _ |u http://dx.doi.org/10.1088/1367-2630/13/4/045020
856 4 _ |u https://juser.fz-juelich.de/record/15161/files/Vliegenthart_2011_New_J._Phys._13_045020.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:15161
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
913 1 _ |k P45
|v BioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung
|l Biologische Informationsverarbeitung
|b Schlüsseltechnologien
|0 G:(DE-Juel1)FUEK505
|x 0
913 2 _ |a DE-HGF
|b Key Technologies
|l BioSoft Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-552
|2 G:(DE-HGF)POF3-500
|v Engineering Cell Function
|x 0
914 1 _ |y 2011
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
920 1 _ |k ICS-2
|l Theorie der weichen Materie und Biophysik
|g ICS
|0 I:(DE-Juel1)ICS-2-20110106
|x 0
920 1 _ |k IAS-2
|l Theorie der Weichen Materie und Biophysik
|g IAS
|z IFF-2
|0 I:(DE-Juel1)IAS-2-20090406
|x 1
970 _ _ |a VDB:(DE-Juel1)127864
980 1 _ |a FullTexts
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)ICS-2-20110106
980 _ _ |a I:(DE-Juel1)IAS-2-20090406
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBI-5-20200312
981 _ _ |a I:(DE-Juel1)IAS-2-20090406
981 _ _ |a I:(DE-Juel1)IAS-2-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21