000151638 001__ 151638
000151638 005__ 20210129213527.0
000151638 0247_ $$2doi$$a10.1111/ppl.12154
000151638 0247_ $$2ISSN$$a0031-9317
000151638 0247_ $$2ISSN$$a1399-3054
000151638 0247_ $$2WOS$$aWOS:000340682100013
000151638 037__ $$aFZJ-2014-01529
000151638 082__ $$a580
000151638 1001_ $$0P:(DE-HGF)0$$aCohu, Ch. M.$$b0$$eCorresponding author
000151638 245__ $$aLeaf anatomical and photosynthetic acclimation to cool temperature and high light in two winter versus tow summer annuals
000151638 260__ $$aOxford [u.a.]$$bWiley-Blackwell$$c2014
000151638 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1423550357_30800
000151638 3367_ $$2DataCite$$aOutput Types/Journal article
000151638 3367_ $$00$$2EndNote$$aJournal Article
000151638 3367_ $$2BibTeX$$aARTICLE
000151638 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000151638 3367_ $$2DRIVER$$aarticle
000151638 520__ $$aAcclimation of foliar features to cool temperature and high light was characterized in winter (Spinacia oleracea L. cv. Giant Nobel; Arabidopsis thaliana (L.) Heynhold Col-0 and ecotypes from Sweden and Italy) versus summer (Helianthus annuus L. cv. Soraya; Cucurbita pepo L. cv. Italian Zucchini Romanesco) annuals. Significant relationships existed among leaf dry mass per area, photosynthesis, leaf thickness and palisade mesophyll thickness. While the acclimatory response of the summer annuals to cool temperature and/or high light levels was limited, the winter annuals increased the number of palisade cell layers, ranging from two layers under moderate light and warm temperature to between four and five layers under cool temperature and high light. A significant relationship was also found between palisade tissue thickness and either cross-sectional area or number of phloem cells (each normalized by vein density) in minor veins among all four species and growth regimes. The two winter annuals, but not the summer annuals, thus exhibited acclimatory adjustments of minor vein phloem to cool temperature and/or high light, with more numerous and larger phloem cells and a higher maximal photosynthesis rate. The upregulation of photosynthesis in winter annuals in response to low growth temperature may thus depend on not only (1) a greater volume of photosynthesizing palisade tissue but also (2) leaf veins containing additional phloem cells and presumably capable of exporting a greater volume of sugars from the leaves to the rest of the plant.
000151638 536__ $$0G:(DE-HGF)POF2-89582$$a89582 - Plant Science (POF2-89582)$$cPOF2-89582$$fPOF II T$$x0
000151638 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000151638 7001_ $$0P:(DE-Juel1)161185$$aMuller, Onno$$b1
000151638 7001_ $$0P:(DE-HGF)0$$aAdams, W. W.$$b2$$eCorresponding Author
000151638 7001_ $$0P:(DE-HGF)0$$aDemmig-Adams, B.$$b3
000151638 773__ $$0PERI:(DE-600)2020837-6$$a10.1111/ppl.12154$$gp. n/a - n/a$$n1$$p164–173$$tPhysiologia plantarum$$v152$$x0031-9317$$y2014
000151638 8564_ $$uhttps://juser.fz-juelich.de/record/151638/files/FZJ-2014-01529.pdf$$yRestricted
000151638 909CO $$ooai:juser.fz-juelich.de:151638$$pVDB
000151638 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161185$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000151638 9132_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0
000151638 9131_ $$0G:(DE-HGF)POF2-89582$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vPlant Science$$x0
000151638 9141_ $$y2014
000151638 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000151638 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000151638 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000151638 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000151638 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000151638 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000151638 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000151638 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000151638 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000151638 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000151638 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000151638 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000151638 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000151638 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000151638 980__ $$ajournal
000151638 980__ $$aVDB
000151638 980__ $$aI:(DE-Juel1)IBG-2-20101118
000151638 980__ $$aUNRESTRICTED