000015165 001__ 15165
000015165 005__ 20240712084510.0
000015165 0247_ $$2DOI$$a10.1063/1.3520665
000015165 0247_ $$2WOS$$aWOS:000285768800138
000015165 0247_ $$2Handle$$a2128/17213
000015165 037__ $$aPreJuSER-15165
000015165 041__ $$aeng
000015165 082__ $$a530
000015165 084__ $$2WoS$$aPhysics, Applied
000015165 1001_ $$0P:(DE-Juel1)VDB98556$$aMinamisawa, R.A.$$b0$$uFZJ
000015165 245__ $$aElastic strain and dopant activation in ion implanted strained Si nanowires
000015165 260__ $$aMelville, NY$$bAmerican Institute of Physics$$c2010
000015165 300__ $$a124908
000015165 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000015165 3367_ $$2DataCite$$aOutput Types/Journal article
000015165 3367_ $$00$$2EndNote$$aJournal Article
000015165 3367_ $$2BibTeX$$aARTICLE
000015165 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000015165 3367_ $$2DRIVER$$aarticle
000015165 440_0 $$03051$$aJournal of Applied Physics$$v108$$x0021-8979$$y12
000015165 500__ $$aThe authors would like to thank Mr. W. Michelsen for performing the ion implantations, Mrs. Steffi Lenk for the electron microscopy, and Mr. M. Hulsbeck for the Raman spectroscopy measurements. This work was partially supported by the German Federal Ministry of Education and Research via the MEDEA + project DECISIF (2T104) and by the European Community through Nanosil network of excellence (FP7 Grant No. 216171).
000015165 520__ $$aStrained Si nanowires (NWs) are attractive for deeply-scaled complementary metal-oxide-semiconductor devices due to the combination of enhanced carrier mobility and excellent electrostatic control as was demonstrated with trigate metal-oxide-semiconductor field effect transistors. The challenge in using strained Si NWs for devices is to preserve the elastic strain during the required processing steps. In this work we investigated the influence of fundamental processing steps like patterning and dopant ion implantation on the structural and transport properties of strained Si layers and NWs on silicon-on-insulator (SOI) substrates. NWs with widths down to 35 nm, fabricated on 25 nm strained SOI and implanted to doses ranging from 5 x 10(14) to 2 x 10(15) ions/cm(2) were investigated. We show that strain conservation and a low sheet resistivity of 6.2 x 10(-4) Omega cm, close to the layer resistivity, can only be obtained if the NWs are patterned on doped layers. For NWs directly implanted to doses above 1 x 10(15) ions/cm(2), complete strain relaxation and structural disorder by solid phase recrystallization were observed. In both cases, NWs with widths smaller than 55 nm exhibit an increased specific resistivity. (C) 2010 American Institute of Physics. [doi:10.1063/1.3520665]
000015165 536__ $$0G:(DE-Juel1)FUEK412$$2G:(DE-HGF)$$aGrundlagen für zukünftige Informationstechnologien$$cP42$$x0
000015165 536__ $$0G:(EU-Grant)216171$$2European Community$$aNANOSIL - Silicon-based nanostructures and nanodevices for long term nanoelectronics applications (216171)$$c216171$$fFP7-ICT-2007-1$$x1
000015165 588__ $$aDataset connected to Web of Science
000015165 650_7 $$2WoSType$$aJ
000015165 7001_ $$0P:(DE-Juel1)VDB85171$$aHabicht, S.$$b1$$uFZJ
000015165 7001_ $$0P:(DE-Juel1)125569$$aBuca, D.$$b2$$uFZJ
000015165 7001_ $$0P:(DE-Juel1)130225$$aCarius, R.$$b3$$uFZJ
000015165 7001_ $$0P:(DE-Juel1)128856$$aTrellenkamp, S.$$b4$$uFZJ
000015165 7001_ $$0P:(DE-HGF)0$$aBourdelle, K.K.$$b5
000015165 7001_ $$0P:(DE-Juel1)VDB4959$$aMantl, S.$$b6$$uFZJ
000015165 773__ $$0PERI:(DE-600)1476463-5$$a10.1063/1.3520665$$gVol. 108, p. 124908$$p124908$$q108<124908$$tJournal of applied physics$$v108$$x0021-8979$$y2010
000015165 8567_ $$uhttp://dx.doi.org/10.1063/1.3520665
000015165 8564_ $$uhttps://juser.fz-juelich.de/record/15165/files/1.3520665-1.pdf$$yOpenAccess
000015165 8564_ $$uhttps://juser.fz-juelich.de/record/15165/files/1.3520665-1.gif?subformat=icon$$xicon$$yOpenAccess
000015165 8564_ $$uhttps://juser.fz-juelich.de/record/15165/files/1.3520665-1.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000015165 8564_ $$uhttps://juser.fz-juelich.de/record/15165/files/1.3520665-1.jpg?subformat=icon-700$$xicon-700$$yOpenAccess
000015165 8564_ $$uhttps://juser.fz-juelich.de/record/15165/files/1.3520665-1.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000015165 909CO $$ooai:juser.fz-juelich.de:15165$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000015165 9141_ $$aNachtrag$$y2010
000015165 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000015165 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000015165 9131_ $$0G:(DE-Juel1)FUEK412$$aDE-HGF$$bSchlüsseltechnologien$$kP42$$lGrundlagen für zukünftige Informationstechnologien (FIT)$$vGrundlagen für zukünftige Informationstechnologien$$x0
000015165 9131_ $$0G:(EU-Grant)216171$$aDE-HGF$$vSilicon-based nanostructures and nanodevices for long term nanoelectronics applications
000015165 9201_ $$0I:(DE-82)080009_20140620$$gJARA$$kJARA-FIT$$lJülich-Aachen Research Alliance - Fundamentals of Future Information Technology$$x1
000015165 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$gPGI$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000015165 9201_ $$0I:(DE-Juel1)IEK-5-20101013$$gIEK$$kIEK-5$$lPhotovoltaik$$x2
000015165 9201_ $$0I:(DE-Juel1)PGI-8-20110106$$gPGI$$kPGI-8$$lBioelektronik$$x3
000015165 970__ $$aVDB:(DE-Juel1)127868
000015165 9801_ $$aFullTexts
000015165 980__ $$aVDB
000015165 980__ $$aConvertedRecord
000015165 980__ $$ajournal
000015165 980__ $$aI:(DE-82)080009_20140620
000015165 980__ $$aI:(DE-Juel1)PGI-9-20110106
000015165 980__ $$aI:(DE-Juel1)IEK-5-20101013
000015165 980__ $$aI:(DE-Juel1)PGI-8-20110106
000015165 980__ $$aUNRESTRICTED
000015165 981__ $$aI:(DE-Juel1)IMD-3-20101013
000015165 981__ $$aI:(DE-Juel1)PGI-9-20110106
000015165 981__ $$aI:(DE-Juel1)IEK-5-20101013
000015165 981__ $$aI:(DE-Juel1)PGI-8-20110106
000015165 981__ $$aI:(DE-Juel1)VDB881