Home > Publications database > Elastic strain and dopant activation in ion implanted strained Si nanowires > print |
001 | 15165 | ||
005 | 20240712084510.0 | ||
024 | 7 | _ | |a 10.1063/1.3520665 |2 DOI |
024 | 7 | _ | |a WOS:000285768800138 |2 WOS |
024 | 7 | _ | |a 2128/17213 |2 Handle |
037 | _ | _ | |a PreJuSER-15165 |
041 | _ | _ | |a eng |
082 | _ | _ | |a 530 |
084 | _ | _ | |2 WoS |a Physics, Applied |
100 | 1 | _ | |0 P:(DE-Juel1)VDB98556 |a Minamisawa, R.A. |b 0 |u FZJ |
245 | _ | _ | |a Elastic strain and dopant activation in ion implanted strained Si nanowires |
260 | _ | _ | |a Melville, NY |b American Institute of Physics |c 2010 |
300 | _ | _ | |a 124908 |
336 | 7 | _ | |a Journal Article |0 PUB:(DE-HGF)16 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a article |2 DRIVER |
440 | _ | 0 | |0 3051 |a Journal of Applied Physics |v 108 |x 0021-8979 |y 12 |
500 | _ | _ | |a The authors would like to thank Mr. W. Michelsen for performing the ion implantations, Mrs. Steffi Lenk for the electron microscopy, and Mr. M. Hulsbeck for the Raman spectroscopy measurements. This work was partially supported by the German Federal Ministry of Education and Research via the MEDEA + project DECISIF (2T104) and by the European Community through Nanosil network of excellence (FP7 Grant No. 216171). |
520 | _ | _ | |a Strained Si nanowires (NWs) are attractive for deeply-scaled complementary metal-oxide-semiconductor devices due to the combination of enhanced carrier mobility and excellent electrostatic control as was demonstrated with trigate metal-oxide-semiconductor field effect transistors. The challenge in using strained Si NWs for devices is to preserve the elastic strain during the required processing steps. In this work we investigated the influence of fundamental processing steps like patterning and dopant ion implantation on the structural and transport properties of strained Si layers and NWs on silicon-on-insulator (SOI) substrates. NWs with widths down to 35 nm, fabricated on 25 nm strained SOI and implanted to doses ranging from 5 x 10(14) to 2 x 10(15) ions/cm(2) were investigated. We show that strain conservation and a low sheet resistivity of 6.2 x 10(-4) Omega cm, close to the layer resistivity, can only be obtained if the NWs are patterned on doped layers. For NWs directly implanted to doses above 1 x 10(15) ions/cm(2), complete strain relaxation and structural disorder by solid phase recrystallization were observed. In both cases, NWs with widths smaller than 55 nm exhibit an increased specific resistivity. (C) 2010 American Institute of Physics. [doi:10.1063/1.3520665] |
536 | _ | _ | |0 G:(DE-Juel1)FUEK412 |2 G:(DE-HGF) |a Grundlagen für zukünftige Informationstechnologien |c P42 |x 0 |
536 | _ | _ | |0 G:(EU-Grant)216171 |2 European Community |a NANOSIL - Silicon-based nanostructures and nanodevices for long term nanoelectronics applications (216171) |c 216171 |f FP7-ICT-2007-1 |x 1 |
588 | _ | _ | |a Dataset connected to Web of Science |
650 | _ | 7 | |2 WoSType |a J |
700 | 1 | _ | |0 P:(DE-Juel1)VDB85171 |a Habicht, S. |b 1 |u FZJ |
700 | 1 | _ | |0 P:(DE-Juel1)125569 |a Buca, D. |b 2 |u FZJ |
700 | 1 | _ | |0 P:(DE-Juel1)130225 |a Carius, R. |b 3 |u FZJ |
700 | 1 | _ | |0 P:(DE-Juel1)128856 |a Trellenkamp, S. |b 4 |u FZJ |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Bourdelle, K.K. |b 5 |
700 | 1 | _ | |0 P:(DE-Juel1)VDB4959 |a Mantl, S. |b 6 |u FZJ |
773 | _ | _ | |0 PERI:(DE-600)1476463-5 |a 10.1063/1.3520665 |g Vol. 108, p. 124908 |p 124908 |q 108<124908 |t Journal of applied physics |v 108 |x 0021-8979 |y 2010 |
856 | 7 | _ | |u http://dx.doi.org/10.1063/1.3520665 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/15165/files/1.3520665-1.pdf |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/15165/files/1.3520665-1.gif?subformat=icon |x icon |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/15165/files/1.3520665-1.jpg?subformat=icon-180 |x icon-180 |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/15165/files/1.3520665-1.jpg?subformat=icon-700 |x icon-700 |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/15165/files/1.3520665-1.pdf?subformat=pdfa |x pdfa |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:15165 |p openaire |p open_access |p driver |p VDB |p ec_fundedresources |p dnbdelivery |
913 | 1 | _ | |0 G:(DE-Juel1)FUEK412 |a DE-HGF |b Schlüsseltechnologien |k P42 |l Grundlagen für zukünftige Informationstechnologien (FIT) |v Grundlagen für zukünftige Informationstechnologien |x 0 |
913 | 1 | _ | |0 G:(EU-Grant)216171 |a DE-HGF |v Silicon-based nanostructures and nanodevices for long term nanoelectronics applications |
914 | 1 | _ | |a Nachtrag |y 2010 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a JCR/ISI refereed |0 StatID:(DE-HGF)0010 |
920 | 1 | _ | |0 I:(DE-82)080009_20140620 |k JARA-FIT |l Jülich-Aachen Research Alliance - Fundamentals of Future Information Technology |g JARA |x 1 |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-9-20110106 |k PGI-9 |l Halbleiter-Nanoelektronik |g PGI |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-5-20101013 |k IEK-5 |l Photovoltaik |g IEK |x 2 |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-8-20110106 |k PGI-8 |l Bioelektronik |g PGI |x 3 |
970 | _ | _ | |a VDB:(DE-Juel1)127868 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a VDB |
980 | _ | _ | |a ConvertedRecord |
980 | _ | _ | |a journal |
980 | _ | _ | |a I:(DE-82)080009_20140620 |
980 | _ | _ | |a I:(DE-Juel1)PGI-9-20110106 |
980 | _ | _ | |a I:(DE-Juel1)IEK-5-20101013 |
980 | _ | _ | |a I:(DE-Juel1)PGI-8-20110106 |
980 | _ | _ | |a UNRESTRICTED |
981 | _ | _ | |a I:(DE-Juel1)IMD-3-20101013 |
981 | _ | _ | |a I:(DE-Juel1)PGI-9-20110106 |
981 | _ | _ | |a I:(DE-Juel1)IEK-5-20101013 |
981 | _ | _ | |a I:(DE-Juel1)PGI-8-20110106 |
981 | _ | _ | |a I:(DE-Juel1)VDB881 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|