000151742 001__ 151742
000151742 005__ 20240708133443.0
000151742 0247_ $$2doi$$a10.1017/S0022377815000380
000151742 0247_ $$2WOS$$aWOS:000356436400007
000151742 037__ $$aFZJ-2014-01632
000151742 082__ $$a530
000151742 1001_ $$0P:(DE-HGF)0$$aZeng, Long$$b0$$eCorresponding Author
000151742 245__ $$aExperimental observation of hot tail runaway electron generation in TEXTOR disruptions
000151742 260__ $$aLondon$$bCambridge Univ. Press$$c2015
000151742 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1435052994_32636
000151742 3367_ $$2DataCite$$aOutput Types/Journal article
000151742 3367_ $$00$$2EndNote$$aJournal Article
000151742 3367_ $$2BibTeX$$aARTICLE
000151742 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000151742 3367_ $$2DRIVER$$aarticle
000151742 520__ $$aExperimental evidence supporting the theory of hot tail runaway electron (RE) generation has been identified in TEXTOR disruptions. With higher temperature, more REs are generated during the thermal quench. Increasing the RE generation by increasing the temperature, an obvious RE plateau is observed even with low toroidal magnetic field (1.7 T). These results explain the previously found electron density threshold for RE generation.
000151742 536__ $$0G:(DE-HGF)POF3-171$$a171 - Stellarator Research (POF3-171)$$cPOF3-171$$fPOF III$$x0
000151742 7001_ $$0P:(DE-Juel1)130066$$aKoslowski, Hans Rudolf$$b1$$ufzj
000151742 7001_ $$0P:(DE-Juel1)130088$$aLiang, Yunfeng$$b2$$ufzj
000151742 7001_ $$0P:(DE-Juel1)145314$$aLvovskiy, Andrey$$b3$$ufzj
000151742 7001_ $$0P:(DE-Juel1)130112$$aNicolai, Dirk$$b4$$ufzj
000151742 7001_ $$0P:(DE-Juel1)142550$$aPearson, Jonathan$$b5
000151742 7001_ $$0P:(DE-Juel1)145407$$aRack, Michael$$b6$$ufzj
000151742 7001_ $$0P:(DE-Juel1)145771$$aDenner, Peter$$b7$$ufzj
000151742 773__ $$0PERI:(DE-600)2004297-8$$a10.1017/S0022377815000380$$n4$$p1-14$$tJournal of plasma physics$$v81$$x0022-3778$$y2015
000151742 909CO $$ooai:juser.fz-juelich.de:151742$$pVDB
000151742 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145673$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000151742 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130088$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000151742 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145314$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000151742 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130112$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000151742 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145407$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000151742 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145771$$aForschungszentrum Jülich GmbH$$b7$$kFZJ
000151742 9130_ $$0G:(DE-HGF)POF2-132$$1G:(DE-HGF)POF2-130$$2G:(DE-HGF)POF2-100$$aDE-HGF$$bEnergie$$lKernfusion$$vTokamak physics for ITER and beyond$$x0
000151742 9131_ $$0G:(DE-HGF)POF3-171$$1G:(DE-HGF)POF3-170$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lKernfusion$$vStellarator Research$$x0
000151742 9141_ $$y2014
000151742 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000151742 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000151742 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000151742 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000151742 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000151742 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000151742 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000151742 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000151742 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000151742 980__ $$ajournal
000151742 980__ $$aVDB
000151742 980__ $$aI:(DE-Juel1)IEK-4-20101013
000151742 980__ $$aUNRESTRICTED
000151742 981__ $$aI:(DE-Juel1)IFN-1-20101013