000151771 001__ 151771
000151771 005__ 20210129213544.0
000151771 0247_ $$2doi$$a10.1016/j.nicl.2013.05.001
000151771 0247_ $$2Handle$$a2128/5950
000151771 0247_ $$2WOS$$aWOS:000209276800075
000151771 0247_ $$2altmetric$$aaltmetric:1476167
000151771 0247_ $$2pmid$$apmid:24179819
000151771 037__ $$aFZJ-2014-01654
000151771 082__ $$a610
000151771 1001_ $$0P:(DE-HGF)0$$aHabes, I.$$b0$$eCorresponding author
000151771 245__ $$aPattern classification of valence in depression
000151771 260__ $$a[Amsterdam u.a.]$$bElsevier$$c2013
000151771 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s151771
000151771 3367_ $$2DataCite$$aOutput Types/Journal article
000151771 3367_ $$00$$2EndNote$$aJournal Article
000151771 3367_ $$2BibTeX$$aARTICLE
000151771 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000151771 3367_ $$2DRIVER$$aarticle
000151771 520__ $$aNeuroimaging biomarkers of depression have potential to aid diagnosis, identify individuals at risk and predict treatment response or course of illness. Nevertheless none have been identified so far, potentially because no single brain parameter captures the complexity of the pathophysiology of depression. Multi-voxel pattern analysis (MVPA) may overcome this issue as it can identify patterns of voxels that are spatially distributed across the brain. Here we present the results of an MVPA to investigate the neuronal patterns underlying passive viewing of positive, negative and neutral pictures in depressed patients. A linear support vector machine (SVM) was trained to discriminate different valence conditions based on the functional magnetic resonance imaging (fMRI) data of nine unipolar depressed patients. A similar dataset obtained in nine healthy individuals was included to conduct a group classification analysis via linear discriminant analysis (LDA). Accuracy scores of 86% or higher were obtained for each valence contrast via patterns that included limbic areas such as the amygdala and frontal areas such as the ventrolateral prefrontal cortex. The LDA identified two areas (the dorsomedial prefrontal cortex and caudate nucleus) that allowed group classification with 72.2% accuracy. Our preliminary findings suggest that MVPA can identify stable valence patterns, with more sensitivity than univariate analysis, in depressed participants and that it may be possible to discriminate between healthy and depressed individuals based on differences in the brain's response to emotional cues
000151771 536__ $$0G:(DE-HGF)POF2-333$$a333 - Pathophysiological Mechanisms of Neurological and Psychiatric Diseases (POF2-333)$$cPOF2-333$$fPOF II$$x0
000151771 536__ $$0G:(DE-HGF)POF2-89572$$a89572 - (Dys-)function and Plasticity (POF2-89572)$$cPOF2-89572$$fPOF II T$$x1
000151771 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000151771 7001_ $$0P:(DE-Juel1)137042$$aKrall, S. C.$$b1$$ufzj
000151771 7001_ $$0P:(DE-HGF)0$$aJohnston, S. J.$$b2
000151771 7001_ $$0P:(DE-HGF)0$$aYuen, K. S. L.$$b3
000151771 7001_ $$0P:(DE-HGF)0$$aHealy, D.$$b4
000151771 7001_ $$0P:(DE-HGF)0$$aGoebel, R.$$b5
000151771 7001_ $$0P:(DE-HGF)0$$aSorger, B.$$b6
000151771 7001_ $$0P:(DE-HGF)0$$aLinden, D. E. J.$$b7
000151771 773__ $$0PERI:(DE-600)2701571-3$$a10.1016/j.nicl.2013.05.001$$gVol. 2, p. 675 - 683$$p675 - 683$$tNeuroImage: Clinical$$v2$$x2213-1582$$y2013
000151771 8564_ $$yPublishers version according to licensing conditions.$$zPublished final document.
000151771 8564_ $$uhttps://juser.fz-juelich.de/record/151771/files/FZJ-2014-01654.pdf$$yOpenAccess$$zPublished final document.
000151771 8564_ $$uhttps://juser.fz-juelich.de/record/151771/files/FZJ-2014-01654.jpg?subformat=icon-144$$xicon-144$$yOpenAccess
000151771 8564_ $$uhttps://juser.fz-juelich.de/record/151771/files/FZJ-2014-01654.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000151771 8564_ $$uhttps://juser.fz-juelich.de/record/151771/files/FZJ-2014-01654.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000151771 909CO $$ooai:juser.fz-juelich.de:151771$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000151771 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)137042$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000151771 9132_ $$0G:(DE-HGF)POF3-572$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$v(Dys-)function and Plasticity$$x0
000151771 9131_ $$0G:(DE-HGF)POF2-333$$1G:(DE-HGF)POF2-330$$2G:(DE-HGF)POF2-300$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lFunktion und Dysfunktion des Nervensystems$$vPathophysiological Mechanisms of Neurological and Psychiatric Diseases$$x0
000151771 9131_ $$0G:(DE-HGF)POF2-89572$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$v(Dys-)function and Plasticity$$x1
000151771 9141_ $$y2013
000151771 915__ $$0LIC:(DE-HGF)CCBYNCND3$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 3.0
000151771 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000151771 915__ $$0StatID:(DE-HGF)0040$$2StatID$$aPeer review unknown
000151771 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000151771 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x0
000151771 980__ $$ajournal
000151771 980__ $$aUNRESTRICTED
000151771 980__ $$aFullTexts
000151771 980__ $$aI:(DE-Juel1)INM-3-20090406
000151771 980__ $$aVDB
000151771 9801_ $$aFullTexts