001     151771
005     20210129213544.0
024 7 _ |a 10.1016/j.nicl.2013.05.001
|2 doi
024 7 _ |a 2128/5950
|2 Handle
024 7 _ |a WOS:000209276800075
|2 WOS
024 7 _ |a altmetric:1476167
|2 altmetric
024 7 _ |a pmid:24179819
|2 pmid
037 _ _ |a FZJ-2014-01654
082 _ _ |a 610
100 1 _ |a Habes, I.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Pattern classification of valence in depression
260 _ _ |a [Amsterdam u.a.]
|c 2013
|b Elsevier
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 151771
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a Neuroimaging biomarkers of depression have potential to aid diagnosis, identify individuals at risk and predict treatment response or course of illness. Nevertheless none have been identified so far, potentially because no single brain parameter captures the complexity of the pathophysiology of depression. Multi-voxel pattern analysis (MVPA) may overcome this issue as it can identify patterns of voxels that are spatially distributed across the brain. Here we present the results of an MVPA to investigate the neuronal patterns underlying passive viewing of positive, negative and neutral pictures in depressed patients. A linear support vector machine (SVM) was trained to discriminate different valence conditions based on the functional magnetic resonance imaging (fMRI) data of nine unipolar depressed patients. A similar dataset obtained in nine healthy individuals was included to conduct a group classification analysis via linear discriminant analysis (LDA). Accuracy scores of 86% or higher were obtained for each valence contrast via patterns that included limbic areas such as the amygdala and frontal areas such as the ventrolateral prefrontal cortex. The LDA identified two areas (the dorsomedial prefrontal cortex and caudate nucleus) that allowed group classification with 72.2% accuracy. Our preliminary findings suggest that MVPA can identify stable valence patterns, with more sensitivity than univariate analysis, in depressed participants and that it may be possible to discriminate between healthy and depressed individuals based on differences in the brain's response to emotional cues
536 _ _ |a 333 - Pathophysiological Mechanisms of Neurological and Psychiatric Diseases (POF2-333)
|0 G:(DE-HGF)POF2-333
|c POF2-333
|f POF II
|x 0
536 _ _ |a 89572 - (Dys-)function and Plasticity (POF2-89572)
|0 G:(DE-HGF)POF2-89572
|c POF2-89572
|x 1
|f POF II T
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Krall, S. C.
|0 P:(DE-Juel1)137042
|b 1
|u fzj
700 1 _ |a Johnston, S. J.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Yuen, K. S. L.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Healy, D.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Goebel, R.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Sorger, B.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Linden, D. E. J.
|0 P:(DE-HGF)0
|b 7
773 _ _ |a 10.1016/j.nicl.2013.05.001
|g Vol. 2, p. 675 - 683
|0 PERI:(DE-600)2701571-3
|p 675 - 683
|t NeuroImage: Clinical
|v 2
|y 2013
|x 2213-1582
856 4 _ |y Publishers version according to licensing conditions.
|z Published final document.
856 4 _ |u https://juser.fz-juelich.de/record/151771/files/FZJ-2014-01654.pdf
|y OpenAccess
|z Published final document.
856 4 _ |u https://juser.fz-juelich.de/record/151771/files/FZJ-2014-01654.jpg?subformat=icon-144
|x icon-144
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/151771/files/FZJ-2014-01654.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/151771/files/FZJ-2014-01654.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:151771
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)137042
913 2 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-572
|2 G:(DE-HGF)POF3-500
|v (Dys-)function and Plasticity
|x 0
913 1 _ |a DE-HGF
|b Gesundheit
|l Funktion und Dysfunktion des Nervensystems
|1 G:(DE-HGF)POF2-330
|0 G:(DE-HGF)POF2-333
|2 G:(DE-HGF)POF2-300
|v Pathophysiological Mechanisms of Neurological and Psychiatric Diseases
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
913 1 _ |a DE-HGF
|0 G:(DE-HGF)POF2-89572
|v (Dys-)function and Plasticity
|x 1
|4 G:(DE-HGF)POF
|1 G:(DE-HGF)POF3-890
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-800
|b Programmungebundene Forschung
|l ohne Programm
914 1 _ |y 2013
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 3.0
|0 LIC:(DE-HGF)CCBYNCND3
|2 HGFVOC
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer review unknown
|0 StatID:(DE-HGF)0040
|2 StatID
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
920 1 _ |0 I:(DE-Juel1)INM-3-20090406
|k INM-3
|l Kognitive Neurowissenschaften
|x 0
980 _ _ |a journal
980 _ _ |a UNRESTRICTED
980 _ _ |a FullTexts
980 _ _ |a I:(DE-Juel1)INM-3-20090406
980 _ _ |a VDB
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21