Home > Workflow collections > Public records > Pattern classification of valence in depression > print |
001 | 151771 | ||
005 | 20210129213544.0 | ||
024 | 7 | _ | |a 10.1016/j.nicl.2013.05.001 |2 doi |
024 | 7 | _ | |a 2128/5950 |2 Handle |
024 | 7 | _ | |a WOS:000209276800075 |2 WOS |
024 | 7 | _ | |a altmetric:1476167 |2 altmetric |
024 | 7 | _ | |a pmid:24179819 |2 pmid |
037 | _ | _ | |a FZJ-2014-01654 |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Habes, I. |0 P:(DE-HGF)0 |b 0 |e Corresponding author |
245 | _ | _ | |a Pattern classification of valence in depression |
260 | _ | _ | |a [Amsterdam u.a.] |c 2013 |b Elsevier |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 151771 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a article |2 DRIVER |
520 | _ | _ | |a Neuroimaging biomarkers of depression have potential to aid diagnosis, identify individuals at risk and predict treatment response or course of illness. Nevertheless none have been identified so far, potentially because no single brain parameter captures the complexity of the pathophysiology of depression. Multi-voxel pattern analysis (MVPA) may overcome this issue as it can identify patterns of voxels that are spatially distributed across the brain. Here we present the results of an MVPA to investigate the neuronal patterns underlying passive viewing of positive, negative and neutral pictures in depressed patients. A linear support vector machine (SVM) was trained to discriminate different valence conditions based on the functional magnetic resonance imaging (fMRI) data of nine unipolar depressed patients. A similar dataset obtained in nine healthy individuals was included to conduct a group classification analysis via linear discriminant analysis (LDA). Accuracy scores of 86% or higher were obtained for each valence contrast via patterns that included limbic areas such as the amygdala and frontal areas such as the ventrolateral prefrontal cortex. The LDA identified two areas (the dorsomedial prefrontal cortex and caudate nucleus) that allowed group classification with 72.2% accuracy. Our preliminary findings suggest that MVPA can identify stable valence patterns, with more sensitivity than univariate analysis, in depressed participants and that it may be possible to discriminate between healthy and depressed individuals based on differences in the brain's response to emotional cues |
536 | _ | _ | |a 333 - Pathophysiological Mechanisms of Neurological and Psychiatric Diseases (POF2-333) |0 G:(DE-HGF)POF2-333 |c POF2-333 |f POF II |x 0 |
536 | _ | _ | |a 89572 - (Dys-)function and Plasticity (POF2-89572) |0 G:(DE-HGF)POF2-89572 |c POF2-89572 |x 1 |f POF II T |
588 | _ | _ | |a Dataset connected to CrossRef, juser.fz-juelich.de |
700 | 1 | _ | |a Krall, S. C. |0 P:(DE-Juel1)137042 |b 1 |u fzj |
700 | 1 | _ | |a Johnston, S. J. |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Yuen, K. S. L. |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Healy, D. |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Goebel, R. |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Sorger, B. |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Linden, D. E. J. |0 P:(DE-HGF)0 |b 7 |
773 | _ | _ | |a 10.1016/j.nicl.2013.05.001 |g Vol. 2, p. 675 - 683 |0 PERI:(DE-600)2701571-3 |p 675 - 683 |t NeuroImage: Clinical |v 2 |y 2013 |x 2213-1582 |
856 | 4 | _ | |y Publishers version according to licensing conditions. |z Published final document. |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/151771/files/FZJ-2014-01654.pdf |y OpenAccess |z Published final document. |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/151771/files/FZJ-2014-01654.jpg?subformat=icon-144 |x icon-144 |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/151771/files/FZJ-2014-01654.jpg?subformat=icon-180 |x icon-180 |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/151771/files/FZJ-2014-01654.jpg?subformat=icon-640 |x icon-640 |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:151771 |p openaire |p open_access |p driver |p VDB |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)137042 |
913 | 2 | _ | |a DE-HGF |b Key Technologies |l Decoding the Human Brain |1 G:(DE-HGF)POF3-570 |0 G:(DE-HGF)POF3-572 |2 G:(DE-HGF)POF3-500 |v (Dys-)function and Plasticity |x 0 |
913 | 1 | _ | |a DE-HGF |b Gesundheit |l Funktion und Dysfunktion des Nervensystems |1 G:(DE-HGF)POF2-330 |0 G:(DE-HGF)POF2-333 |2 G:(DE-HGF)POF2-300 |v Pathophysiological Mechanisms of Neurological and Psychiatric Diseases |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF2 |
913 | 1 | _ | |a DE-HGF |0 G:(DE-HGF)POF2-89572 |v (Dys-)function and Plasticity |x 1 |4 G:(DE-HGF)POF |1 G:(DE-HGF)POF3-890 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-800 |b Programmungebundene Forschung |l ohne Programm |
914 | 1 | _ | |y 2013 |
915 | _ | _ | |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 3.0 |0 LIC:(DE-HGF)CCBYNCND3 |2 HGFVOC |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer review unknown |0 StatID:(DE-HGF)0040 |2 StatID |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |
920 | 1 | _ | |0 I:(DE-Juel1)INM-3-20090406 |k INM-3 |l Kognitive Neurowissenschaften |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a FullTexts |
980 | _ | _ | |a I:(DE-Juel1)INM-3-20090406 |
980 | _ | _ | |a VDB |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|