000151821 001__ 151821
000151821 005__ 20240712112835.0
000151821 0247_ $$2doi$$a10.1002/zaac.201300593
000151821 0247_ $$2ISSN$$a0044-2313
000151821 0247_ $$2ISSN$$a1521-3749
000151821 0247_ $$2WOS$$aWOS:000333697200016
000151821 037__ $$aFZJ-2014-01695
000151821 082__ $$a540
000151821 1001_ $$0P:(DE-HGF)0$$aYoon, Songhak$$b0$$eCorresponding author
000151821 245__ $$aSynthesis, Crystal Structure, Electric and Magnetic Properties of LaVO 2.78 N 0.10
000151821 260__ $$aWeinheim$$bWiley-VCH$$c2014
000151821 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1403506087_4388
000151821 3367_ $$2DataCite$$aOutput Types/Journal article
000151821 3367_ $$00$$2EndNote$$aJournal Article
000151821 3367_ $$2BibTeX$$aARTICLE
000151821 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000151821 3367_ $$2DRIVER$$aarticle
000151821 520__ $$aPerovskite-type LaVO2.78N0.10 powder was synthesized by thermal ammonolysis of the oxide precursor LaVO4. By X-ray, neutron, and electron diffraction an orthorhombic crystal structure with space group Pnma was identified. XANES spectra showed that the oxidation state of vanadium changes from 5+ in LaVO4 to approximately 3+ in LaVO2.78N0.10. The temperature dependence of the electrical conductivity revealed an Arrhenius-type behavior with an activation energy of 0.103 eV in the temperature range of 119–302 K indicating that the conduction process is thermally activated band transition. Based on the positive Seebeck coefficient, holes were identified as the dominant charge carriers in the temperature range of 100–302 K. Both the Seebeck coefficient and the thermal conductivity showed an anomaly at 138 K, which is attributed to the Néel temperature for antiferromagnetic ordering according to magnetic susceptibility measurements.
000151821 536__ $$0G:(DE-HGF)POF2-123$$a123 - Fuel Cells (POF2-123)$$cPOF2-123$$fPOF II$$x0
000151821 536__ $$0G:(DE-HGF)POF2-152$$a152 - Renewable Energies (POF2-152)$$cPOF2-152$$fPOF II$$x1
000151821 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000151821 7001_ $$0P:(DE-HGF)0$$aMaegli, Alexandra E.$$b1
000151821 7001_ $$0P:(DE-HGF)0$$aKarvonen, Lassi$$b2
000151821 7001_ $$0P:(DE-HGF)0$$aShkabko, Andrey$$b3
000151821 7001_ $$0P:(DE-HGF)0$$aPopuloh, Sascha$$b4
000151821 7001_ $$0P:(DE-HGF)0$$aGałązka, Krzysztof$$b5
000151821 7001_ $$0P:(DE-HGF)0$$aSagarna, Leyre$$b6
000151821 7001_ $$0P:(DE-HGF)0$$aAguirre, Myriam H.$$b7
000151821 7001_ $$0P:(DE-Juel1)156296$$aJakes, Peter$$b8$$ufzj
000151821 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b9$$ufzj
000151821 7001_ $$0P:(DE-HGF)0$$aEbbinghaus, Stefan G.$$b10
000151821 7001_ $$0P:(DE-HGF)0$$aPokrant, Simone$$b11
000151821 7001_ $$0P:(DE-HGF)0$$aWeidenkaff, Anke$$b12
000151821 773__ $$0PERI:(DE-600)1481139-x$$a10.1002/zaac.201300593$$gp. n/a - n/a$$n5$$p797-804$$tZeitschrift für anorganische und allgemeine Chemie$$v640$$x0044-2313$$y2014
000151821 8564_ $$uhttps://juser.fz-juelich.de/record/151821/files/FZJ-2014-01695.pdf$$yRestricted
000151821 909CO $$ooai:juser.fz-juelich.de:151821$$pVDB
000151821 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156296$$aForschungszentrum Jülich GmbH$$b8$$kFZJ
000151821 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich GmbH$$b9$$kFZJ
000151821 9132_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000151821 9131_ $$0G:(DE-HGF)POF2-123$$1G:(DE-HGF)POF2-120$$2G:(DE-HGF)POF2-100$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lRationelle Energieumwandlung und -nutzung$$vFuel Cells$$x0
000151821 9131_ $$0G:(DE-HGF)POF2-152$$1G:(DE-HGF)POF2-150$$2G:(DE-HGF)POF2-100$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lTechnologie, Innovation und Gesellschaft$$vRenewable Energies$$x1
000151821 9141_ $$y2014
000151821 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000151821 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000151821 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000151821 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000151821 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000151821 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000151821 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000151821 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000151821 915__ $$0StatID:(DE-HGF)1020$$2StatID$$aDBCoverage$$bCurrent Contents - Social and Behavioral Sciences
000151821 920__ $$lyes
000151821 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
000151821 980__ $$ajournal
000151821 980__ $$aVDB
000151821 980__ $$aI:(DE-Juel1)IEK-9-20110218
000151821 980__ $$aUNRESTRICTED
000151821 981__ $$aI:(DE-Juel1)IET-1-20110218