001     151845
005     20240712100827.0
024 7 _ |a 10.5194/gmdd-7-1759-2014
|2 doi
024 7 _ |a 1991-962X
|2 ISSN
024 7 _ |a 1991-9611
|2 ISSN
024 7 _ |a 2128/5845
|2 Handle
037 _ _ |a FZJ-2014-01703
082 _ _ |a 910
100 1 _ |a Hoppe, Charlotte
|0 P:(DE-Juel1)144192
|b 0
|e Corresponding author
|u fzj
245 _ _ |a The implementation of the CLaMS Lagrangian transport core into the chemistry climate model EMAC 2.40.1: application on age of air and transport of long-lived trace species
260 _ _ |a Katlenburg-Lindau
|c 2014
|b Copernicus
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 151845
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
500 _ _ |3 POF3_Assignment on 2016-02-29
520 _ _ |a Lagrangian transport schemes have proven to be useful tools for modelling stratospheric trace gas transport since they are less diffusive than classical Eulerian schemes and therefore especially well suited for maintaining steep tracer gradients. Here, we present the implementation of the full-Lagrangian transport core of the Chemical Lagrangian Model of the Stratosphere (CLaMS) into the ECHAM/MESSy Atmospheric Chemistry model (EMAC). We performed a ten-year time-slice simulation to evaluate the coupled model system EMAC/CLaMS. Simulated zonal mean age of air distributions are compared to age of air derived from airborne measurements, showing a good overall representation of the stratospheric circulation. Results from the new Lagrangian transport scheme are compared to tracer distributions calculated with the standard flux-form semi-Lagrangian (FFSL) transport scheme in EMAC. The differences in the resulting tracer distributions are most pronounced in the regions of strong transport barriers. The polar vortices are presented as an example and simulated trace gas distributions are compared to satellite measurements. The analysis of CFC-11, N2O, CH4, and age of air in the polar vortex regions shows that the CLaMS Lagrangian transport scheme produces a stronger, more realistic transport barrier at the edge of the polar vortex than the FFSL transport scheme of EMAC. Differences in simulated age of air range up to one year in the Arctic polar vortex in late winter/early spring. The new coupled model system EMAC/CLaMS thus constitutes a suitable tool for future model studies of stratospheric tracer transport.
536 _ _ |a 244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244)
|0 G:(DE-HGF)POF3-244
|c POF3-244
|f POF III
|x 0
536 _ _ |a 411 - Computational Science and Mathematical Methods (POF2-411)
|0 G:(DE-HGF)POF2-411
|c POF2-411
|f POF II
|x 1
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Hoffmann, L.
|0 P:(DE-Juel1)129125
|b 1
|u fzj
700 1 _ |a Konopka, P.
|0 P:(DE-Juel1)129130
|b 2
|u fzj
700 1 _ |a Grooß, J.-U.
|0 P:(DE-Juel1)129122
|b 3
|u fzj
700 1 _ |a Ploeger, F.
|0 P:(DE-Juel1)129141
|b 4
|u fzj
700 1 _ |a Günther, G.
|0 P:(DE-Juel1)129123
|b 5
|u fzj
700 1 _ |a Jöckel, P.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Müller, Rolf
|0 P:(DE-Juel1)129138
|b 7
|u fzj
773 _ _ |a 10.5194/gmdd-7-1759-2014
|g Vol. 7, no. 2, p. 1759 - 1790
|0 PERI:(DE-600)2456729-2
|n 2
|p 1759 - 1790
|t Geoscientific model development discussions
|v 7
|y 2014
|x 1991-962X
856 4 _ |u https://juser.fz-juelich.de/record/151845/files/FZJ-2014-01703.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/151845/files/FZJ-2014-01703.jpg?subformat=icon-144
|x icon-144
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/151845/files/FZJ-2014-01703.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/151845/files/FZJ-2014-01703.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:151845
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)144192
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129125
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129130
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129122
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129141
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129123
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)129138
913 2 _ |a DE-HGF
|b Key Technologies
|l Supercomputing & Big Data
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-519H
|2 G:(DE-HGF)POF3-500
|v Addenda
|x 0
913 1 _ |a DE-HGF
|l Atmosphäre und Klima
|1 G:(DE-HGF)POF3-240
|0 G:(DE-HGF)POF3-244
|2 G:(DE-HGF)POF3-200
|v Composition and dynamics of the upper troposphere and middle atmosphere
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
913 1 _ |a DE-HGF
|b Schlüsseltechnologien
|l Supercomputing
|1 G:(DE-HGF)POF2-410
|0 G:(DE-HGF)POF2-411
|2 G:(DE-HGF)POF2-400
|v Computational Science and Mathematical Methods
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
914 1 _ |y 2014
915 _ _ |a Creative Commons Attribution CC BY 3.0
|0 LIC:(DE-HGF)CCBY3
|2 HGFVOC
915 _ _ |a No Peer review
|0 StatID:(DE-HGF)0020
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
920 1 _ |0 I:(DE-Juel1)IEK-7-20101013
|k IEK-7
|l Stratosphäre
|x 0
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a FullTexts
980 _ _ |a I:(DE-Juel1)IEK-7-20101013
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)ICE-4-20101013
981 _ _ |a I:(DE-Juel1)JSC-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21