000151851 001__ 151851
000151851 005__ 20220930130028.0
000151851 0247_ $$2doi$$a10.1002/2013WR014823
000151851 0247_ $$2ISSN$$a0148-0227
000151851 0247_ $$2ISSN$$a1944-7973
000151851 0247_ $$2ISSN$$a0043-1397
000151851 0247_ $$2WOS$$aWOS:000333563900050
000151851 0247_ $$2Handle$$a2128/19832
000151851 037__ $$aFZJ-2014-01709
000151851 082__ $$a550
000151851 1001_ $$0P:(DE-Juel1)140349$$aKurtz, Wolfgang$$b0$$eCorresponding author
000151851 245__ $$aJoint assimilation of piezometric heads and groundwater temperatures for improved modeling of river-aquifer interactions
000151851 260__ $$aWashington, DC$$bAGU$$c2014
000151851 3367_ $$2DRIVER$$aarticle
000151851 3367_ $$2DataCite$$aOutput Types/Journal article
000151851 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1399375082_3046
000151851 3367_ $$2BibTeX$$aARTICLE
000151851 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000151851 3367_ $$00$$2EndNote$$aJournal Article
000151851 520__ $$aThe ensemble Kalman filter (EnKF) is increasingly used to improve the real-time prediction of groundwater states and the estimation of uncertain hydraulic subsurface parameters through assimilation of measurement data like groundwater levels and concentration data. At the interface between surface water and groundwater, measured groundwater temperature data can provide an additional source of information for subsurface characterizations with EnKF. Additionally, an improved prediction of the temperature field itself is often desirable for groundwater management. In this work, we investigate the worth of a joint assimilation of hydraulic and thermal observation data on the state and parameter estimation with EnKF for two different model setups: (i) a simple synthetic model of a river-aquifer system where the parameters and simulation conditions were perfectly known and (ii) a model of the Limmat aquifer in Zurich (Switzerland) where an exhaustive set of real-world observations of groundwater levels (87) and temperatures (22) was available for assimilation (year 2007) and verification (year 2011). Results for the synthetic case suggest that a joint assimilation of piezometric heads and groundwater temperatures together with updating of uncertain hydraulic parameters gives the best estimation of states and hydraulic properties of the model. For the real-world case, the prediction of groundwater temperatures could also be improved through data assimilation with EnKF. For the validation period, it was found that parameter fields updated with piezometric heads reduced RMSE's of states significantly (heads −49%, temperature −15%), but an additional conditioning of parameters on groundwater temperatures only influenced the characterization of the temperature field.
000151851 536__ $$0G:(DE-HGF)POF2-246$$a246 - Modelling and Monitoring Terrestrial Systems: Methods and Technologies (POF2-246)$$cPOF2-246$$fPOF II$$x0
000151851 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000151851 7001_ $$0P:(DE-Juel1)138662$$aHendricks-Franssen, Harrie-Jan$$b1
000151851 7001_ $$0P:(DE-HGF)0$$aKaiser, Hans-Peter$$b2
000151851 7001_ $$0P:(DE-Juel1)129549$$aVereecken, Harry$$b3
000151851 773__ $$0PERI:(DE-600)2029553-4$$a10.1002/2013WR014823$$gp. n/a - n/a$$n2$$p1665–1688$$tWater resources research$$v50$$x0043-1397$$y2014
000151851 8564_ $$uhttps://juser.fz-juelich.de/record/151851/files/FZJ-2014-01709.pdf$$yOpenAccess$$zPublished final document.
000151851 8767_ $$92014-03-14$$d2014-04-02$$ePage charges$$jZahlung erfolgt$$zUSD 2750,-
000151851 909CO $$ooai:juser.fz-juelich.de:151851$$popenCost$$pVDB$$pVDB:Earth_Environment$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000151851 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140349$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000151851 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138662$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000151851 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129549$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000151851 9132_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$aDE-HGF$$bMarine, Küsten- und Polare Systeme$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000151851 9131_ $$0G:(DE-HGF)POF2-246$$1G:(DE-HGF)POF2-240$$2G:(DE-HGF)POF2-200$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vModelling and Monitoring Terrestrial Systems: Methods and Technologies$$x0
000151851 9141_ $$y2014
000151851 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000151851 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000151851 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000151851 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000151851 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000151851 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000151851 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000151851 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000151851 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer review
000151851 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000151851 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000151851 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000151851 915__ $$0StatID:(DE-HGF)1020$$2StatID$$aDBCoverage$$bCurrent Contents - Social and Behavioral Sciences
000151851 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000151851 920__ $$lyes
000151851 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000151851 980__ $$ajournal
000151851 980__ $$aVDB
000151851 980__ $$aUNRESTRICTED
000151851 980__ $$aI:(DE-Juel1)IBG-3-20101118
000151851 980__ $$aAPC
000151851 9801_ $$aAPC
000151851 9801_ $$aFullTexts