001     151851
005     20220930130028.0
024 7 _ |a 10.1002/2013WR014823
|2 doi
024 7 _ |a 0148-0227
|2 ISSN
024 7 _ |a 1944-7973
|2 ISSN
024 7 _ |a 0043-1397
|2 ISSN
024 7 _ |a WOS:000333563900050
|2 WOS
024 7 _ |a 2128/19832
|2 Handle
037 _ _ |a FZJ-2014-01709
082 _ _ |a 550
100 1 _ |a Kurtz, Wolfgang
|0 P:(DE-Juel1)140349
|b 0
|e Corresponding author
245 _ _ |a Joint assimilation of piezometric heads and groundwater temperatures for improved modeling of river-aquifer interactions
260 _ _ |a Washington, DC
|c 2014
|b AGU
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1399375082_3046
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The ensemble Kalman filter (EnKF) is increasingly used to improve the real-time prediction of groundwater states and the estimation of uncertain hydraulic subsurface parameters through assimilation of measurement data like groundwater levels and concentration data. At the interface between surface water and groundwater, measured groundwater temperature data can provide an additional source of information for subsurface characterizations with EnKF. Additionally, an improved prediction of the temperature field itself is often desirable for groundwater management. In this work, we investigate the worth of a joint assimilation of hydraulic and thermal observation data on the state and parameter estimation with EnKF for two different model setups: (i) a simple synthetic model of a river-aquifer system where the parameters and simulation conditions were perfectly known and (ii) a model of the Limmat aquifer in Zurich (Switzerland) where an exhaustive set of real-world observations of groundwater levels (87) and temperatures (22) was available for assimilation (year 2007) and verification (year 2011). Results for the synthetic case suggest that a joint assimilation of piezometric heads and groundwater temperatures together with updating of uncertain hydraulic parameters gives the best estimation of states and hydraulic properties of the model. For the real-world case, the prediction of groundwater temperatures could also be improved through data assimilation with EnKF. For the validation period, it was found that parameter fields updated with piezometric heads reduced RMSE's of states significantly (heads −49%, temperature −15%), but an additional conditioning of parameters on groundwater temperatures only influenced the characterization of the temperature field.
536 _ _ |a 246 - Modelling and Monitoring Terrestrial Systems: Methods and Technologies (POF2-246)
|0 G:(DE-HGF)POF2-246
|c POF2-246
|f POF II
|x 0
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Hendricks-Franssen, Harrie-Jan
|0 P:(DE-Juel1)138662
|b 1
700 1 _ |a Kaiser, Hans-Peter
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Vereecken, Harry
|0 P:(DE-Juel1)129549
|b 3
773 _ _ |a 10.1002/2013WR014823
|g p. n/a - n/a
|0 PERI:(DE-600)2029553-4
|n 2
|p 1665–1688
|t Water resources research
|v 50
|y 2014
|x 0043-1397
856 4 _ |u https://juser.fz-juelich.de/record/151851/files/FZJ-2014-01709.pdf
|y OpenAccess
|z Published final document.
909 C O |o oai:juser.fz-juelich.de:151851
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB:Earth_Environment
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)140349
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)138662
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129549
913 2 _ |a DE-HGF
|b Marine, Küsten- und Polare Systeme
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
913 1 _ |a DE-HGF
|b Erde und Umwelt
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF2-240
|0 G:(DE-HGF)POF2-246
|2 G:(DE-HGF)POF2-200
|v Modelling and Monitoring Terrestrial Systems: Methods and Technologies
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
914 1 _ |y 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
|2 StatID
915 _ _ |a Peer review
|0 StatID:(DE-HGF)0030
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1020
|2 StatID
|b Current Contents - Social and Behavioral Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21