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Abstract The ensemble Kalman filter (EnKF) is increasingly used to improve the real-time prediction of
groundwater states and the estimation of uncertain hydraulic subsurface parameters through assimilation
of measurement data like groundwater levels and concentration data. At the interface between surface
water and groundwater, measured groundwater temperature data can provide an additional source of
information for subsurface characterizations with EnKF. Additionally, an improved prediction of the temper-
ature field itself is often desirable for groundwater management. In this work, we investigate the worth of a
joint assimilation of hydraulic and thermal observation data on the state and parameter estimation with
EnKF for two different model setups: (i) a simple synthetic model of a river-aquifer system where the param-
eters and simulation conditions were perfectly known and (ii) a model of the Limmat aquifer in Zurich (Swit-
zerland) where an exhaustive set of real-world observations of groundwater levels (87) and temperatures
(22) was available for assimilation (year 2007) and verification (year 2011). Results for the synthetic case sug-
gest that a joint assimilation of piezometric heads and groundwater temperatures together with updating
of uncertain hydraulic parameters gives the best estimation of states and hydraulic properties of the model.
For the real-world case, the prediction of groundwater temperatures could also be improved through data
assimilation with EnKF. For the validation period, it was found that parameter fields updated with piezomet-
ric heads reduced RMSE’s of states significantly (heads 249%, temperature 215%), but an additional condi-
tioning of parameters on groundwater temperatures only influenced the characterization of the
temperature field.

1. Introduction

A special feature of river-aquifer systems is that there can be a distinct cyclic heat exchange between the
river and the aquifer. Depending on the meteorological conditions, surface water temperatures are sub-
jected to diurnal and seasonal temperature variations whereas groundwater is characterized by relatively
constant temperatures. The temperature distribution around streams is therefore governed by the tempera-
ture difference and the exchange pattern between river and aquifer. For example, seepage from the river to
the aquifer can result in a temperature signal that propagates from the river into the aquifer depending on
the seasonal/diurnal temperature contrast between the two compartments. Vice versa, an aquifer that dis-
charges into the river can also generate a distinct thermal profile within the river bed. This heat exchange
between river and aquifer can be deployed to characterize the exchange fluxes as well as relevant material
properties of the river bed and the adjacent aquifer [Anderson, 2005; Constantz, 2008]. As a tracer, ground-
water temperatures are more sensitive to the connectivity patterns within an aquifer compared to hydraulic
data alone and can thus provide additional information on aquifer structure. Another feature that makes
the utilization of heat as a tracer very attractive is that temperature data can be measured very easily at a
low cost.

Temperature measurements have, for example, been used to derive a detailed spatial picture of river-
aquifer exchange fluxes under field conditions [e.g., Conant, 2004; Schmidt et al., 2006; Hatch et al., 2010]. A
common approach for such small-scale applications is to measure vertical temperature profiles in the river
bed and to apply an analytical solution to the measured temperature profiles to infer the exchange fluxes
between river and aquifer [Schornberg et al., 2010]. In most cases, only a limited number of point
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measurements of temperatures are available for the estimation of exchange fluxes. Recently, also tempera-
ture measurements with fiber-optic sensors, also called Distributed Temperature Sensing (DTS)[Tyler et al.,
2009], have gained interest for the derivation of spatially highly resolved temperature distributions [Vogt
et al., 2012].

Thermal data have already been used as an additional information source for different inversion techniques
to constrain the estimation of subsurface parameters. For example, Woodbury and Smith [1988] investigated
the worth of thermal data for the calibration of steady state groundwater models. They argue that thermal
data can better constrain the calibration of hydraulic conductivities especially for high-permeable aquifers
when heat advection is the dominant process. Doussan et al. [1994] calibrated a managed river-aquifer sys-
tem which included bank filtration with hydraulic and thermal data and found an improved estimation of
river bed parameters compared to hydraulic data alone. Bravo et al. [2002] also used hydraulic and thermal
data for the inversion of a wetland-aquifer system to derive hydraulic conductivities and wetland inflows.
They showed that the inversion gets more stable and accurate when thermal data are used compared to
hydraulic data alone. Friedel [2005] calibrated vadose zone and transport parameters of a synthetic model
of artificial aquifer recharge with different combinations of piezometric head, concentration and thermal
data. In Jiang and Woodbury [2006], a Bayesian inversion technique was applied to an aquifer model which
was conditioned on different combinations of piezometric heads, transmissivities and temperature meas-
urements. They found that the characterization of hydraulic conductivities was improved with temperature
data for different inversion scenarios.

For modeling purposes, an important implication of the temperature contrast between rivers and aquifers
and the resulting heat transfer is that these temperature changes in the sediment induce a cyclic variation
of water density and viscosity which also affects the hydraulic conductivity of the river bed sediments.
Changes in water density can usually be neglected for the temperature range that occurs in river-aquifer
systems but water viscosity could change up to a factor of 1.7 given a typical temperature range between 5
and 25�C. For example, Constantz et al. [1994] argue that their measured diurnal variation of river-aquifer
exchange fluxes is largely attributed to the temperature dependency of hydraulic properties of the
streambed. Engeler et al. [2011] have shown that considering the temperature dependency of water viscos-
ity in the simulation of river-aquifer exchange can reduce the predictions errors of piezometric heads at
individual measurement locations up to 30%. Ma and Zheng [2010] investigated the effect of regarding
temperature-dependent hydraulic parameters for the modeling of heat transport in river-aquifer systems.
They concluded that temperature contrasts up to 15�C lead to an average error in temperature predictions
of about 3% calculated over their whole model domain. However, they did not compare the effects on indi-
vidual measurement locations.

Apart from river-aquifer systems, heat transfer calculations can also be relevant to other systems of surface
water-groundwater exchange. One example is artificial recharge because for such systems also a tempera-
ture contrast between surface water and groundwater is given. Vandenbohede and Van Houtte [2012] give
an example of such an application where heat transport calculations were made for an artificial recharge
system to characterize the transport behavior underneath a recharge basin. Racz et al. [2012] used meas-
ured temperature profiles underneath an artificial recharge basin to determine local infiltration fluxes.

An excellent example of a managed groundwater system that includes the effects of river-aquifer exchange
and artificial recharge is the Limmat aquifer in Zurich (Switzerland). For the groundwater management at
this site, water is pumped from several bank filtration wells close to the river Limmat and this water is then
artificially recharged to the aquifer through several recharge basins and wells. This measure is taken to pro-
tect drinking water wells from a diffuse contamination that is present close to the well field. These manage-
ment activities heavily influence the hydraulic and thermal situation in this aquifer. Recently, a real-time
modeling system was set up for the management of this site [Hendricks Franssen et al., 2011]. In this frame-
work, the ensemble Kalman filter (EnKF) [Evensen, 1994; Burgers et al., 1998] is applied to correct the piezo-
metric head predictions and the hydraulic parameters of a 3-D groundwater model for this site with data
from a dense online-monitoring network for groundwater levels on a daily basis. The updated predictions
of this model can then be used to optimize the operation of the well field through a real-time control sys-
tem [Bauser et al., 2010, 2012; Marti et al., 2012]. In 2005, the monitoring network was additionally equipped
with several online sensors for groundwater temperature which allow a continuous monitoring of the ther-
mal situation within the well field. As already pointed out before, groundwater temperatures are well suited
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as a tracer for exchange processes between surface water and groundwater which also have a large influ-
ence on the operation of the well field in the Limmat aquifer. Thus, the additional online monitoring of
groundwater temperatures can provide important information on the subsurface structure for this site
which is until now not utilized in the EnKF data assimilation framework.

The aim of the following study is to extend the existing EnKF data assimilation framework, so that also tem-
perature measurements can be used to update the predictions of groundwater states and model parame-
ters. There is a request from groundwater managers at this site to improve the prediction of the
temperature distribution in the aquifer because it is desired to avoid the pumping of drinking water that is
too warm because this can negatively influence drinking water quality through bacterial contamination and
increases the need for disinfection measures. EnKF offers the possibility to improve the prediction of the
thermal regime of the aquifer in real time with the installed monitoring network for groundwater tempera-
tures and groundwater managers also plan to include the results of such a real-time model in the real-time
control of the well field. To the best of our knowledge, the extension of EnKF to the coupled subsurface
flow-heat transport problem including parameter updating is a novel contribution. The joint assimilation of
piezometric head and temperature data will first be tested with a synthetic river-aquifer model in order to
assess the worth of the additional temperature assimilation on the estimation of hydraulic parameters
under controlled conditions. Afterward, the extended data assimilation framework will also be applied to
the real-world data of the Limmat aquifer and it will be explored how the assimilation of measured ground-
water temperatures affects the prediction of heat transport in the model and also how the joint assimilation
of hydraulic and thermal data affects the estimation of hydraulic parameters under real-world conditions.
This dual approach allows us to monitor the effectiveness of the joint assimilation scheme at the transition
from a more theoretical approach (synthetic setup) toward the more complicated situation of a real-world
model. This is of special interest because the vast majority of EnKF applications in groundwater hydrology
deal with synthetic cases which test data assimilation techniques under idealized conditions where
unknown sources of uncertainty or model structural errors are excluded from the analysis. For the real-
world case, an extensive data set of hydraulic head and temperature observations (87 and 22 daily observa-
tions respectively) is available for a period of 6 years (2006–2011). Observation data are split into an assimi-
lation period (year 2007) and a subsequent validation period (year 2011) in which the effect of parameter
updates on temperature predictions is assessed. A second important aspect of this work is therefore the
verification of a calibrated coupled subsurface flow-heat transport model with both hydraulic head and
groundwater temperature data, for a period which is several years separated from the assimilation period.
Different updating scenarios are compared with these observation data. These scenarios study the impact
of the assimilation of different data types (groundwater levels and/or groundwater temperatures) and the
role of data availability and data quality on the assimilation process. An apparent difference between the
joint utilization of hydraulic and thermal data in EnKF and the use of these data in other previously pub-
lished inversion schemes is also that these data are not only used for the determination of uncertain model
parameters but that EnKF also provides an assessment of model uncertainty and is used to for updating
model states in real time. A further aspect that is investigated in this study is the effect of covariance local-
ization on state-parameter updates with EnKF under real-world conditions. This issue has already been
addressed by several studies on EnKF in subsurface characterization [e.g., Nan and Wu, 2011; Devegowda
et al., 2010; Chen and Oliver, 2010]. However, these applications of localization were restricted to the assimi-
lation of one measurement type in most cases (except Chen and Oliver [2010]) and were only done for syn-
thetic data.

2. Methodology

In this study, we perform data assimilation experiments with a coupled flow and heat transport ground-
water model. In order to illustrate the technical setup for these experiments, section 2.1 summarizes the
governing equations and the utilized groundwater modeling software, sections 2.2, 2.3, and 2.4 explain the
implementation of EnKF for this study and sections 3.1 and 3.2 provide an overview about the specific
model setups for the synthetic and the real-world groundwater models.

2.1. Forward Model
The variably saturated subsurface flow equation can be stated as [Bear and Chen, 2010]:
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where n is porosity [-], qw is density of water [M L23], S(h) is saturation [-], h is water content [L3 L23], t is
time [T], k is permeability [L2], kr(h) is relative permeability [-], l is dynamic viscosity [M L21 T21], p is pres-
sure [M L21 T22], g is gravitational acceleration [M T22], z is height above datum [L], and qf are additional
source/sink terms [M L23 T21].

The relative permeability can be derived with the van Genuchten parameterization [van Genuchten, 1980]:
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where ĥ is normalized water content, hr is residual water content, hs is saturated water content, and np is an
empirical parameter.

The heat transport equation can be summarized as:
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c�v 5ð12nÞqbcb1nqw cw (3b)
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where T is temperature [H], qb is bulk density [M L23], cw and cb are specific heat capacities of water and
solid matrix [L2 T22 H21], jw and jb are thermal conductances of water and solid matrix [M L H21 T23], v is
Darcy velocity [L T21], and qh are additional thermal source/sink term [M L21 T23].

For our study, the groundwater modeling software SPRING [Delta h Ingenieurgesellschaft mbH, 2006] was
used to solve the coupled equations of 3-D variably saturated flow and heat transport (equations (1)–(3c)).
River-aquifer exchange which is highly relevant in our study is implemented in SPRING as a Cauchy-type
boundary condition (i.e., leakage principle):

Q5ALðhriver 2hgw Þ (4)

where Q is leakage flux [L3 T21], A is the area assigned to a leakage node [L2], L is leakage coefficient [T21],
hriver is river stage [L], and hgw is groundwater level underneath a river node.

2.2. Joint Assimilation of Piezometric Head and Temperature Data With EnKF
The ensemble Kalman filter [Evensen, 1994; Burgers et al., 1998] is a data assimilation technique in
which an ensemble of different model realizations (e.g., with different initial conditions, forcing terms,
or parameters) is simulated forward and sequentially updated with measurement data. Updates can be
made for the model states and model parameters which makes this methodology suitable for the real-
time prediction of state variables as well as a model calibration tool. After its first applications in pet-
rophysical and hydrogeological settings [e.g., Lorentzen et al., 2003; Naevdal et al., 2005; Liu et al.,
2008; Hendricks Franssen and Kinzelbach, 2008], this methodology recently gained increasing interest
for the characterization of subsurface state variables and parameters. Different types of data have
already been used for subsurface characterization, which include hydraulic head measurements [e.g.,
Hendricks Franssen and Kinzelbach, 2008; Nowak, 2009], concentration data [Liu et al., 2008; Camporese
et al., 2011; Li et al., 2012], or discharge measurements [Camporese et al., 2009]. Temperature data
have been shown to contain valuable information especially for the characterization of hydraulic
parameters of river-aquifer systems and monitoring of this variable can be achieved at a low
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operational cost. Improving the predictions of the thermal situation in the subsurface is also important
for groundwater management close to streams in order to be able to estimate/prevent the pumping
of too warm drinking water.

For the joint assimilation of piezometric heads and groundwater temperatures which is performed in this
study the data assimilation scheme described in Hendricks Franssen et al. [2011] was extended so that meas-
urements of hydraulic heads and groundwater temperatures can be assimilated jointly in the updating
algorithm. The model states for the system under investigation are piezometric heads h, and groundwater
temperatures T and the relevant uncertain parameters / are hydraulic conductivities K and leakage coeffi-
cients L:

w5
h

T

 !
(5)

/5
log 10ðKÞ

log 10ðLÞ

 !
(6)

The state-parameter vector in the updating scheme of EnKF is then given as:
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The model states of W are found by forward propagation of the uncertain parameter ensemble
(K and L) with a numerical model that solves the relevant flow and transport equations from
section 2.1.

For the update of W, measurement data of piezometric heads yh and groundwater temperatures yT are
used which are combined in the measurement vector y:

y5
yh

yT

 !
(8)

For the assimilation of these measurement data with EnKF, y has to be perturbed with the expected mea-
surement errors of h and T (�h and �T) (for details see Burgers et al. [1998]). For each realization i, a separate
perturbation vector is drawn from a normal distribution Nð0; �Þ with a mean of zero and a standard devia-
tion � that is derived from the expected measurement errors �h and �T. This yields a separate perturbed
measurement vector ŷ for each realization:

ŷ i5
yh

yT

 !
1
Nð0; �hÞ

N ð0; �T Þ

 !
(9)

The updating equation for W is given as:

Wa
i 5Wt

i 1aGðŷ i2HWt
i Þ (10)

where Wt
i and Wa

i are the forecasted and updated state-parameter vectors (see equation (7)), ŷ i is the per-
turbed measurement vector of piezometric heads and groundwater temperatures (see equation (9)), G is
the Kalman gain, and a is a damping factor for the parameter update that takes values between 0 and 1
and is used to reduce the effect of filter inbreeding [Hendricks Franssen and Kinzelbach, 2008]. The Kalman
gain G is calculated with the following equation:
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G5CH>ðHCH>1RÞ21 (11)

where H is a matrix that maps/interpolates the simulated states to the observation points, C is the full covar-
iance matrix of the model states and uncertain model parameters, and R is the covariance matrix of mea-
surement errors.

The following covariance matrix is used in the calculation of the Kalman gain for the joint update of h, T,
and the parameters:

CH>5

Chĥ CT T̂

Clog 10ðKÞĥ Clog 10ðKÞT̂
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0
BB@

1
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where ĥ are the simulated piezometric heads at observation points and T̂ are the simulated groundwater
temperatures at observation points. Note that the cross covariances between h and T are neglected in this
assimilation scheme, i.e., neither h is used to update T nor T is used to update h.

2.3. Localization
For some of the simulations, the effect of distance-dependent localization [Hamill et al., 2001] was tested in
the EnKF updating scheme. The rationale behind localization is to restrict the influence of observation points
in space so that each observation point only has a certain area of influence around itself (which is defined by
the length-scale variable k). Model variables beyond this area are then not updated with measurements from
this observation point. For this purpose, the Schur product (i.e., an element wise multiplication of two matri-
ces) of the covariance matrix CH> and a localization matrix X is calculated at each assimilation cycle and the
so derived localized covariance matrix is then used in the calculation of the Kalman gain:

CH>
� �new

ij 5ðCH>Þij � Xij (13)

where i and j are the matrix indices. The elements of X were calculated with the following localization func-
tion [Hamill et al., 2001; Gaspari and Cohn, 1999]:
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where g is the Euclidean distance between an observation point and an element of the state-parameter
vector W [L] and k is a certain length scale which has to be defined for the problem [L]. This function has a
shape similar to a Gaussian bell curve with the major difference that values beyond a fixed value (k) for this
function are zero whereas values for a Gaussian distribution are always greater than zero.

2.4. Parallelization of Assimilation Code
EnKF3d-SPRING is a C program that manages the forward calculations of the ensemble and calculates the
EnKF updating step for each assimilation cycle. The actual solution of the flow and transport equations is
calculated by the groundwater modeling software SPRING [Delta h Ingenieurgesellschaft mbH, 2006] which
is called from within EnKF3d-SPRING as a library function for each realization and time step. EnKF3d-SPRING
has already been used for the assimilation of hydraulic head data in Hendricks Franssen et al. [2011]. In order
to perform the joint assimilation of hydraulic and thermal data, the data assimilation scheme implemented
in EnKF3d-SPRING [see Hendricks Franssen et al., 2011] was extended with the updating equations given in
section 2.2. However, as the computational burden for the calculation of a large number of realizations with
a coupled flow and heat transport model is tremendously higher than the calculation of pure groundwater
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flow, it was necessary to parallel-
ize EnKF3d-SPRING in order to
retrieve results in an acceptable
computation time. Principally,
the parallelization of data assimi-
lation codes can be performed at
three levels:

1. Parallelizing the call of the for-
ward runs

2. Parallelizing the forward model

3. Parallelizing the updating step

As there was no parallel version available for the forward model SPRING, only parallelization at the levels 1
and 3 could be implemented in EnKF3d-SPRING. Low-order performance tests on the supercomputing plat-
form JUROPA at Forschungszentrum J€ulich showed that the parallel version of EnKF3d-SPRING scales well
up to 128 processors with an efficiency of about 70%.

3. Model Setup

3.1. Synthetic River-Aquifer Model
Assimilation experiments were first performed with a simplified synthetic model of a river-aquifer system. A
sketch of the model setup is given in Figure 1. The model has a dimension of 500 3 250 3 10 m and is dis-
cretized into 50 3 25 3 10 cells. A river was placed in the middle of the model domain and is discretized
into two rows of leakage nodes. Three extraction wells were placed south of the river and a regular grid of
observation wells was lain out over the whole model domain. Hydraulic forcing data for the model are tran-
sient discharge of the river (expressed as river stages), transient pumping rates for the three wells, and a
constant small lateral inflow/outflow at the eastern/western face of the model (assigned to the three lowest
layers). Thermal forcing data are transient river temperatures.

The entire input data were based on real-world measurements for the Limmat aquifer. River stages were
calculated from measured discharge data of river Sihl for the year 2006 with the modeling platform ParFlow
[Ashby and Falgout, 1996; Jones and Woodward, 2001; Kollet and Maxwell, 2006] assuming the river geome-
try depicted in Figure 1. Pumping rates were taken from three bank filtration wells in the Limmat aquifer
but withdrawal rates were halved in order to achieve a reasonable mass balance for the small synthetic
model. River temperatures were taken from measurements of the river Sihl in 2006. A summary of the forc-
ing data for the synthetic model is given in Figure 2.

For the synthetic experiments, a reference run with a specific K and L field (see below for details on the gen-
eration of these fields) was integrated for a 1 year period with the model described above. The h and T data
sampled from this reference run (at the observation points) were then taken as input data for assimilation
experiments with EnKF.

Figure 2. Forcing data for synthetic experiments.

Figure 1. Model setup for synthetic experiments.
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The reference log10 (K) field was generated with
Sequential Gaussian Simulation [G�omez-Hern�an-
dez and Journel, 1993] with a mean of 22 log10

(ms21), a range of 100 m, and a sill of 0.5 log10

(m2s22) using a spherical variogram. The initial
ensemble of K fields was created in a similar way
but with a mean value of 21 instead of 22
log10 (ms21) (range and sill were the same as for
the creation of the reference field). The refer-
ence field for leakage coefficients L was created
by reducing the K values underneath the river
by one log unit and dividing this value by the
discharge area of the respective leakage node.
The initial ensemble of L was created in a similar
way by taking the initial K values underneath
the river, multiplying them by 0.5 and also divid-
ing them by the discharge area of the corre-
sponding leakage node. Note that K and L fields
used in the data assimilation experiments are
therefore slightly biased with respect to the ref-
erence fields, for this setup. Tables 1 and 2 give
an overview of the settings used for heat trans-
port simulations and for the data assimilation
with EnKF. The measurement errors given in

Table 2 correspond to the estimated monitoring errors of observation wells in the Limmat aquifer. The mea-
surement error of hydraulic heads includes errors in the determination of groundwater levels as well as uncer-
tainty related to determining the exact vertical height of the piezometer (e.g., through subsidence of the
piezometer pipe). The measurement error of groundwater temperatures is an estimate of the precision of the
online temperature sensors. With respect to the heat transport simulations it is also noteworthy that only tem-
perature effects on fluid viscosity were considered in the calculations and thermal changes of fluid density
were assumed to be of minor importance for the considered temperature range of the simulations. Table 3
additionally summarizes the different updating scenarios for the synthetic case.

3.2. Model and Input Data for Real-World Case
Simulations for the real-world case were performed with a 3-D-model of the Limmat aquifer in Zurich. The
model domain has a spatial extent of approximately 6 3 2 km and is discretized into 92,015 model nodes,
173,599 finite elements, and 25 layers (Figure 3). The horizontal discretization varies between 1 and 50 m
and the vertical discretization is set to 1.6 m. The rivers Limmat and Sihl are chosen as the northern and
eastern boundaries of the model domain which is in correspondence with the geological and hydrological
conditions for this site. Within the model there is an area of intensive management activities (Hardhof area)
where water is pumped from several bank filtration and drinking water wells. Additionally, artificial ground-
water recharge is performed through several infiltration wells and three recharge basins.

Transient boundary conditions of the flow model include recharge flux at the top of the model domain,
small lateral inflows from surrounding hills on the south and north face of the model, fixed head boundary

Table 1. Parameters for Heat Transport Simulations for Synthetic
and Real-World Experiments

Parameter Value Unit

Longitudinal dispersivity aL 25 m
Transversal dispersivity aT 2.5 m
qb 2600 kg m23

qw 1000 kg m23

jb 3.5 Js21 m21 K21

jw 0.587 Js21 m21 K21

cb 800 Jkg21 K21

cw 4192 Jkg21 K21

Table 2. Parameters for Data Assimilation With EnKF for Synthetic
and Real-World Experimentsa

Parameter

Value

UnitSynthetic Real World

Nreal 128 128 -
Nobs (h) 36 87 -
Nobs (T) 36 22 -
a 0.1 0.1 -
Update frequency 10 10 d
Eh 0.05 0.05 m
�T 0.1 0.1 K

aNreal is number of ensemble members and Nobs is the number of
observation points.

Table 3. Simulation Scenarios for Synthetic Casea

Scenario Name

Update of:

Nobs (h) Nobs (T) k (m)h T K L

SYuc 0 0 -
SYhT � � 36 36 -
SYhKL � � � 36 36 -
SYTKL � � � 36 36 -
SYhTKL � � � � 36 36 -/100/200/350/500

aMultiple column entries indicate that the scenario was simulated with varying values for this variable.
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conditions on the western face, river stages of the rivers Limmat and Sihl as well as infiltration and pumping
rates of the management wells. Details on the calculation of transient boundary conditions for the flow
model can be found in Hendricks Franssen et al. [2011]. Transient boundary conditions for the heat transport
simulations include river temperatures, the temperature of injected water in infiltration wells/recharge
basins, and the temperature of the first model layer which is set equal to the 20 cm soil temperature meas-
ured at the meteorological station Zurich-Reckenholz (MeteoSwiss). The temperatures for the small lateral
inflows were set to a value of 13�C which is the average groundwater temperature further away from the
river. The thermal regime in the model domain is mainly influenced by river-aquifer exchange and manage-
ment activities and the contribution of lateral inflows only plays a subordinate role.

Simulations were performed with 128 different realizations of hydraulic conductivity fields and leakage
coefficients. These model parameters are characterized by a considerable variability in natural settings and
are supposed to be the most influencing factors on the model dynamics and on the propagation of uncer-
tainty within the model. Of course, other parameters like thermal conductivities or porosities could also con-
tribute to the uncertainty in the model but their variability is usually less pronounced than the one of
permeability data. Therefore, we restricted our analysis to hydraulic parameters although this poses certain
limitations on the overall assessment of model performance. The initial ensemble of hydraulic conductivities
was generated on the basis of a precalibration of the flow model with 87 piezometric head data for the
time periods June 2004 and July 2005 with the pilot point method including a regularization term [Alcolea
et al., 2006]. This calibrated log10 (K) field served as the mean value for the log10 (K) ensemble. The individ-
ual ensemble members were then derived by perturbing this calibrated log10 (K) field with perturbation
fields that were generated by Sequential Gaussian Simulation [G�omez-Hern�andez and Journel, 1993]. This
approach was chosen to provide a reasonable estimate for the average log10 (K) within the model area in
order to achieve numerically stable forward simulations. The geostatistical parameters for the creation of
the perturbation fields (nugget: 0 log10 (ms21), sill: 0.584 log10 (m2s22), range in horizontal direction: 99 m,
range in vertical direction: 3.2 m, spherical variogram) were estimated from about 857 small-scale log10 (K)-
measurements that were conducted for this area [see Hendricks Franssen et al., 2011]. The perturbation fields
were generated on a very fine grid (1 m 3 1 m 3 0.01 m) and then upscaled to the simulation grid through
simplified renormalization [Renard et al., 2000] and added to the calibrated log10 (K) field.

The ensemble of leakage coefficients log10 (L) was also generated by Sequential Gaussian Simulation. As
there were no measurements of river bed conductivities available for this site the geostatistical parameters
for the generation of log10 (L) fields were sampled from a wide range of values. A spherical variogram was
used for the generation of log10 (L) fields with a range sampled from a uniform distribution between 50 and
5000 m, a sill sampled from a uniform distribution between 0.1 and 2 log10 (m2s22) and a nugget of 0 log10

Figure 3. Position of observation points for piezometric heads and groundwater temperatures: (left) distribution of observation points over the whole Limmat aquifer model and (right)
distribution of observation points in the Hardhof area.
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(ms21). Note that for these geostatistical simulations we used a modified formulation of the leakage coeffi-
cient (L*) which is L multiplied with an estimation of the river width for the particular river node. This is
done because L* is the direct input parameter required by the model. Throughout the rest of this work we
will use L and L* interchangeably because the river width is relatively uniform along the river reach and we
will not discuss on the absolute value of this model parameter.

Within the model area 87 observation points for piezometric heads and 22 observation points for ground-
water temperatures are available. The spatial position of these observation points is shown in Figure 3.
Hydraulic head observations are distributed over the whole model domain with the highest density in the
Hardhof area where most of the management activities take place. The observation points for groundwater
temperatures are only clusters in the Hardhof area mostly between the recharge basins and the river in dif-
ferent depths.

Data assimilation experiments were conducted for different settings of EnKF which include the update of
states only, the joint update of states and parameters and the use of localization. Tables 1, 2, and 4 give an
overview of the standard settings for heat transport calculations, EnKF, and the performed simulation
scenarios.

Online sensors for measuring groundwater temperature are available from autumn 2005. Therefore, heat
transport simulations were performed with data ranging from 2006 to 2012. Four simulation periods were
distinguished. The year 2006 was used as a warm-up period for the model in order to have a more realistic
estimate of the temperature distribution within the aquifer. This spin-up was conducted with the initial
parameter ensembles of K and L without data assimilation. The initial h and T fields for the spin-up period
were generated with steady state calculations using averaged parameter fields as input. The starting value
of groundwater temperature for this steady state calculation was set to 13�C for the entire aquifer which is
roughly the mean groundwater temperature measured further away from the rivers. The final h and T fields
from the spin-up period for each ensemble member were then used as initial conditions for the different
assimilation experiments that were conducted for the year 2007. The updated parameter ensembles for this
assimilation period were then used in validation runs to additionally access the performance of the different
assimilation strategies for parameter estimation. From January 2008 to October 2010 some major recon-
structions were performed in the Hardhof area. These activities included the utilization of additional pump-
ing wells and nonstandard management activities for which only incomplete information was available.
Therefore, this time period could not be used for the validation of the different assimilation scenarios and
the validation simulations were done for the hydrological year 2011 (November 2010 to October 2011). The
period from January 2008 to October 2010 was used as a spin-up for the validation period (November 2010
to October 2011) which started with the final results (state ensembles and updated parameter ensembles)
from the assimilation period.

Table 5 summarizes the different time periods for the heat transport calculations and Figure 4 gives an over-
view on the forcing data that were used for the initial spin-up, the assimilation period and the verification
period.

3.3. Performance Measures
The performance of the different assimilation runs was evaluated with the root mean square error (RMSE) of
model states (h and T) or model parameters (K and L). In the case of the synthetic study, RMSE is calculated
over all model nodes or model elements because the values for the reference are known exactly. For the
real-world application, RMSE is calculated only for states at measurement locations because these are the

Table 4. Simulation Scenarios for Real-World Casea

Scenario

Update of:

Nobs (h) Nobs (T) k (m) �hðmÞ �Tð�CÞh T K L

RWuc 0 0 - 0.05 0.1
RWhT � � 87/40 22/11 - 0.05 0.1
RWhKL � � � 87 22 - 0.05 0.1
RWhTKL � � � � 87/40 22/11 -/2000/3000 0.05/0.25/0.5 0.1/0.5/1.0

aMultiple column entries indicate that the scenario was simulated with varying values for this variable.
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only available data sources for evaluating the performance of the simulations. RMSE is usually calculated
per time step and with respect to the mean value of the specific variable. A general formula for the calcula-
tion of RMSE for variable x for time step t is:

RMSE ðx; tÞ5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

i51

ð�x iðtÞ2xref
i ðtÞÞ

2

vuut (15)

where N is the number of model nodes/model elements for synthetic experiments and the number of
observation points for real-world applications. xref are values from reference runs in synthetic experiments
and measurement values for the real-world case.

4. Results

4.1. Synthetic Experiments
The different updating scenarios are first compared with respect to the deviation of state variables from the
reference values. Figure 5 shows the RMSE of piezometric heads and groundwater temperatures for the dif-
ferent scenarios. If only states are updated, there is only a minor improvement compared to unconditional
simulations. This is related to the bias in the parameter values of the initial K and L ensembles. When piezo-
metric heads are jointly updated with parameters (scenarios SYhKL and SYhTKL) errors are significantly
reduced. For these scenarios, the joint update of piezometric heads and groundwater temperatures leads to
lower RMSE(h) values in the first phase of the simulation period but is outperformed by SYhKL in the final
stage of the simulations. RMSE(T) shows a seasonal variation for all scenarios as opposed to RMSE(h). The
highest values for RMSE(T) occur during the summer months when higher river temperatures propagate
into the aquifer. These higher deviations between reference and ensemble predictions stem from a mis-
match concerning the location of the heat plume between the reference and the ensemble simulations
(due to the different parameterization of K and L) and from the higher absolute temperature difference
between river and aquifer. The lowest RMSE(T) is found for scenario SYhTKL where all states and uncertain
parameters are jointly updated. For the scenario without an update of T (scenario SYhKL), temperature pre-
dictions are similar to unconditional simulation and partly show a higher RMSE(T). Thus, a parameter update
which is only based on hydraulic data might have little impact on prediction of transport processes.

The effect of h and T assimilation on parameter updates can be seen in Figure 6 which shows RMSE of K
and L for scenarios SYhKL, SYhTKL, and SYTKL. When piezometric head data are used to update parameters

Figure 4. Forcing data of the real-world study for the years 2006–2011.

Table 5. Time Periods for Heat Transport Simulations (Real-World Case)

Period Purpose Initial h/T Initial K/L

(I) 1/1/2006–31/12/2006 Initial spin-up Steady state Initial ensemble
(II) 1/1/2007–31/12/2007 Assimilation period From unconditional

simulation (I)
Initial ensemble

(III) 1/1/2008–31/10/2010 Spin-up verification
period

Final ensembles from (II) Final ensembles from (II)

(IV) 1/11/2010–31/10/2011 Verification period Final ensembles from (III) Final ensembles from (II)
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there is a fast decrease of RMSE within the first assimilation cycles. This decrease is mainly caused by a cor-
rection of the bias between the reference fields and the initial ensembles. When only temperature data are
used to condition the parameter fields (scenario SYTKL) there is almost no correction of parameter values
which explains the similarity between scenario SYhT and SYTKL in terms of temperature distribution and
RMSE(T). From Figure 6, it can also be seen that the joint assimilation of h and T gives slightly better param-
eter estimates for K and L than the scenario where only h data are used. The conditioning of K and L on h
leads to a RMSE(K) reduction of 30.0% and a RMSE(L) reduction of 73.1% whereas a joint conditioning on h
and T gives a RMSE(K) reduction of 36.7% and a RMSE(L) reduction of 77.3%.

Figure 7 compares the final ensemble means of K for scenarios SYhKL, SYhTKL, and SYTKL with the reference
field. For scenario SYTKL, there are only minor updates compared to the initial ensemble which do not corre-
spond very well with the distribution of K in the reference field. Therefore, temperature data alone seem
not to be very sensitive on the distribution of K values for this synthetic model setup. When piezometric
head data are assimilated with EnKF (scenarios SYhKL and SYhTKL) the ensemble mean of K is much closer to
the reference field. K values are mainly updated along the river reach because the highest sensitivity of the
model is related to river stage fluctuations. For scenario SYhKL, K values along the river reach are lower than
for scenario SYhTKL which causes slightly higher RMSE values for scenario SYhKL. The different magnitude of
K values along the river reach for scenarios SYhKL and SYhTKL is probably related to their different updating
behavior with respect to L (Figure 8). Here it can be seen that the uncertainty in the final L ensemble is
higher for SYhKL than for SYhTKL, i.e., with assimilation of h data alone the distribution of L could not be con-
strained as well as with a joint assimilation of h and T. As a result, also the residuals for K were higher for
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Figure 5. Root mean square error of (left) updated piezometric heads and (right) groundwater temperatures for the synthetic test case and different updating scenarios (Table 3).
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Figure 6. Root mean square error for (left) updated hydraulic conductivities and (right) updated leakage coefficients for scenarios SYhKL, SYhTKL, and SYTKL (Table 3).
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scenario SYhKL compared to SYhTKL. From Figure 8, it also becomes obvious that the assimilation of h mostly
led to a correction of the bias of the initial L ensemble whereas the assimilation of temperature data (sce-
narios SYTKL and SYhTKL) led to a more precise determination of the spatial structure of leakage coefficients.
The main advantage of using a joint assimilation of h and T for the synthetic experiments is that both state
variables have a different information content which allows a better estimation of leakage parameters. h
data provide information on the net exchange between river and groundwater and thus are sensitive to the
bias between initial ensemble and the reference values. T data give additional information on the spatial
location of exchange fluxes and therefore constrain the spatial structure of leakage parameters.

In a next step, the effect of localization on parameter updates was tested. For this purpose, scenario SYhTKL

was rerun with different k values of the localization function (equation (14)) ranging from 100 to 500 m. The
lower bound of k of 100 m corresponds to the geostatistical range parameter of the generated K fields (ref-
erence and ensemble) and the upper bound of k of 500 m corresponds to the size of the model domain.
RMSE of temperature predictions and K values for these simulation runs are shown in Figure 9. The simula-
tion with a localization limit of 100 m consistently performed worse compared to the simulation without
any localization. In this case, the region of influence for the observations is too restricted and only the
model cells adjacent to the grid cell of observation points are updated. When the localization limit is
increased there is no observable effect on simulated groundwater temperatures but the estimation of K val-
ues is improved compared to the simulation without localization. It also can be seen from Figure 9 that the
estimation of K gets slightly worse again when the localization limit is increased from 350 to 500 m. For the
simulation without localization there are some parts where K values were highly increased during the
update (e.g., at the most right corner of the model domain, see Figure 7). However, these zones with high K
values are not present in the reference field and are possibly caused by spurious correlations related to the
limited ensemble size of 128 members. When localization is used, these zones of elevated K values are elim-
inated or at least reduced during the updating procedure whereby the general structure of updated K

Figure 7. Updated fields of hydraulic conductivities (end of simulation period) for scenarios SYhKL, SYhTKL, and SYTKL (Table 3).
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values (i.e., reduced values along the river reach) is preserved. This finally leads to lower RMSE(K) values for
simulations with localization.

4.2. Assimilation of Groundwater Temperature Data for Real-World Case
The results for the assimilation of temperature data for the real-world case cannot be evaluated for the
whole model domain because only data for the measurement locations are available. Additionally, for these
simulations the true parameter distribution for K and L is unknown and the evaluation of updated parame-
ter values is restricted to visual inspection of the updated parameter fields. Therefore, the errors of h and T
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Figure 8. Updated fields of leakage coefficients (end of simulation period) for scenarios SYhKL, SYhTKL, and SYTKL (Table 3).
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are additionally monitored for a
validation period in which the
quality of parameter updates for
the different updating scenarios
is compared on the basis of h
and T predictions.

4.2.1. Assimilation Period:
Effect of Updating Scheme
Figure 10 compares the basic
updating scenarios (see Table 4)
in terms of the temporal evolu-
tion of RMSE values for h and T
and Figure 11 summarizes the
statistics of RMSE values at obser-
vation points (calculated for the
whole assimilation period). All
RMSE(h) time series are charac-
terized by some day to day fluc-
tuations due to the transient
boundary conditions and by a
sharp increase around day 110
which is caused by a period of
increased pumping rates. For
RWuc, the overall errors are rela-
tively high due to the highly
uncertain K and L ensembles. For
all updating scenarios, the assimi-

lation with EnKF improves the prediction of h and T compared to unconditional simulations. Piezometric
heads at measurement locations show high temporal fluctuations when only state variables are updated.
An additional parameter update leads to relatively constant values of RMSE(h) and there is no observable
effect of temperature assimilation on RMSE(h). The average improvement of RMSE(h) with parameter
update is about 74% (compared to RWuc) leading to average RMSE(h) values of about 0.33 m. For the real-
world case, the seasonal cycle of RMSE(T) is less pronounced than for the synthetic case which is probably
attributed to the more complex model dynamics in the real-world case. In addition, for RMSE(T), the effect
of parameter update is smaller than for RMSE(h) because the mean values for scenario RWhT are very similar
to the mean values of scenario RWhTKL. RWhT shows an average RMSE(T) improvement of 62.5% (compared
to RWuc) whereas the average reduction for RWhTKL is 65.8%. The main difference between scenarios RWhT
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Figure 10. Temporal evolution of RMSE of h and T for different updating scenarios (see
Table 4).
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and RWhTKL lies in the temporal fluctuations of RMSE(T) which are higher for scenario RWhT. The different
effect of parameter updates for h and T is also apparent from the statistics of the residuals. For piezometric
heads, there is a significant discrepancy between the median of residuals for scenarios RWhT and RWhKL/
RWhTKL. Also the variability of errors is higher when only states are updated. In contrast, for groundwater
temperatures there is not so much difference in the error distribution between scenarios RWhT and RWhTKL.
However, the parameter update becomes important also for T predictions when there are gaps in the time
series of temperature measurement data. This is exemplified in Figure 12 which shows the temperature
evolution for an observation point with partly missing measurement data. Here it can be seen that the miss-
ing reduction of parameter uncertainty in scenario RWhT can lead to much larger ensemble spread when no
measurement data are available.

Final hydraulic conductivity fields differ only marginally between RWhKL and RWhTKL (data not shown) but
an effect is visible for the final parameter distribution for leakage coefficients (Figure 13). Here an additional
assimilation of groundwater temperatures led to an overall reduction of uncertainty of the L ensemble.
However, the basic structure of updated L fields is still very similar to the scenarios without T assimilation.

4.2.2. Assimilation Period: Effect of Observation Density and Data Quality
In a next step, the effects of observation density and measurement errors on the update of groundwater
temperatures and piezometric heads were explored in further detail. The assigned values of measurement
errors for h and T that were used for the previous simulations ð�h50:05m; �T 50:1�CÞ can be seen as optimal
values for the measurement devices for the site. However, the accuracy of online sensors may also decrease
over time due to alteration of the measurement device or drifts in the calibration function. Also the flow
conditions within the bore hole and the support volume of the measurement device may have an effect on
the accuracy of the measurements which are hard to quantify and were not regarded in the previous used
values of measurement error. Therefore, the measurement errors for h and T were multiplied with a factor
of 5 and 10 and results for the different measurement errors were compared for scenario RWhTKL (Figure
14). Generally, the increase of measurement errors led to higher errors for h and T. This is visible from the
temporal evolution of RMSE and also from the higher spread of the residuals. This occurs because increas-
ing measurement uncertainty leads to lower weights in the Kalman gain matrix and thus to a decreasing

Figure 13. Initial and updated fields of leakage coefficients after the last assimilation cycle. Updated leakage coefficients are shown for a scenario (middle) without and (right) with
assimilation of groundwater temperatures.

Figure 12. Evolution of groundwater temperatures during the assimilation period for one observation point with partly missing data. Red lines display measured groundwater tempera-
tures and gray lines display different realizations of the ensemble.
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adaptation toward the measure-
ments. However, the effect of
measurement errors is slightly
different for h and T. For piezo-
metric heads, the RMSE does not
differ so much between the sce-
narios with different measure-
ment errors (DRMSE(h) � 0.08m).
For groundwater temperatures,
measurement errors have a
higher impact on the assimilation
(DRMSE(T) up to 0.33�C). This dis-
crepancy is related to the differ-
ent prediction uncertainty for h
and T. After the first few assimila-
tion cycles the ensemble spread
for groundwater temperatures is
very low for most of the observa-
tion points and EnKF therefore
assigns a high confidence to tem-
perature predictions. Forecasts
for piezometric heads show more
variability and therefore the rela-
tive increase of measurement
error has less effect on the
update compared to ground-
water temperatures.

The effect of observation density
was investigated for scenarios
RWhT and RWhTKL by reducing
the number of observation points
for h and T to about half of the
values that are available for the
site. The results for these scenar-
ios are compared in Figure 15.
For piezometric heads there is
not much difference for the sce-
narios with low and high obser-
vation density. Only when
parameters are included in the
assimilation with EnKF there is
some tendency for a higher
spread in the error statistics
when a lower amount of meas-
urements is used. For ground-
water temperatures, the situation
is very different compared to pie-
zometric heads. In this case the
errors rise significantly when only
half of the observation points are
available for conditioning with
EnKF. This relationship can be
found for both updating scenar-
ios (states only and state-

0 50 100 150 200 250 300 3500.
0

1.
0

2.
0

time [d]

R
M

S
E

( h
) [

m
]

RWuc
RWhTKL
RWhTKL  ε×5
RWhTKL  ε×10

0 50 100 150 200 250 300 3500.
0

0.
5

1.
0

1.
5

time [d]

R
M

S
E

(T
)  [

° C
]

Figure 14. Temporal evolution of RMSE of h and T for different measurement errors. �35
and �310 means a 5 or 10 times higher measurement error compared to the settings
give in Table 2.
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Figure 15. Temporal evolution of RMSE of h and T for different observation densities
with and without parameter update.
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parameter update) with a slight tendency toward higher errors for the state-only scenario. The relatively
low sensitivity toward observation density for piezometric heads is probably an effect of the higher abun-
dance of piezometric head measurements for this site (87) compared to groundwater temperature data
(22). Using only 40 piezometric head measurements instead of 87 thus still gives enough information of sys-
tem dynamics and there is a certain amount of redundant information for the 87 piezometers. An additional
reason for the different error statistics of h and T with respect to observation density are the different corre-
lation lengths of both variables. Groundwater levels for the site are relatively smooth due to the high per-
meability of the unconfined aquifer whereas groundwater temperature is mainly driven by river-aquifer
exchange due to pumping and by the artificial recharge which leads to small-scale variability of the temper-
ature distribution within the model domain. As a consequence, a single measurement of piezometric head
gives more information on the surrounding area than a measurement of groundwater temperature. This
affects the critical amount of data that is necessary to constrain the system states with EnKF.

4.2.3. Assimilation Period: Effect of Localization
In a next step, it was tried to identify the effect of localization on the state-parameter updates with EnKF.
Localization with two different k values (2000 and 3000 m) was compared with the standard assimilation
scheme for scenario RWhTKL. RMSE values for the different localization scenarios indicate that the errors of
piezometric heads slightly increase when localization is used. In contrast, the observed errors for ground-
water temperature are not so sensitive to localization. For a localization length scale k of 2000 m there is a
slight decrease in error variance but the median value is approximately the same as for the simulation with-
out localization.

A reason for the different behavior of h and T with respect to localization could be the different correlation
length of both variables. A comparison of the correlations length of h and T for various observation points
and time steps shows that the covariances for h have a much longer range than for T (�1000 m versus
�400 m). When such a long range covariance function is then tapered with a localization function that has
a smaller spatial extent, information may be lost in the assimilation with EnKF. For groundwater tempera-
tures, the spatial correlation is much lower and therefore fits better within the range of the utilized localiza-
tion function. The effect of localization is also visible for the parameter updates. For example, without
localization the variability in the L ensemble decreased for the whole river reach and a distinct spatial pat-
tern is visible in the final ensemble. When localization is used, only the part of the river that is close to the
management activities shows a significant reduction in ensemble variance because the density of observa-
tion points is highest here. In addition, the observation points are also much closer to the river in this area
than in other parts of the model. The spatial distribution of updated mean hydraulic conductivities at the
end of the assimilation period is visualized in Figure 16. It is visible that the parameter update for K with
unlocalized EnKF leads to a relatively patchy structure and a high degree of spatial variability where mean K
values between neighboring cells can exhibit considerable contrasts. On the one hand, this is related to the
large number of degrees of freedom for the parameter update with EnKF, i.e., observation data are used to
update the parameters of each grid cell separately to reduce the misfit between observations and fore-
casted state variables. On the other hand, spurious correlations due to the limited ensemble size may also
play a role in this context and could emphasize a certain randomness in the assimilation procedure. Local-
ization generally leads to a smoothing of the updated K fields. It can be seen that the scenarios with and
without localization yield approximately the same spatial structure of K fields at the end of the assimilation
period. However, localization leads to less extreme K values and the transition between neighboring cells is
much more gentle than for the update with unlocalized EnKF. Note however that the ensemble variance at
individual cells is tendentially higher for the simulations with localization (especially further away from
observation points).

4.2.4. Validation Period
In this section, the quality of the updated parameter ensembles from the assimilation period is assessed
with validation runs for the hydrological year 2011. Figure 17 shows the errors for h and T for different
updating scenarios (unconditional, with updated parameters on the basis of h only and with updated
parameters also conditioned to T) and a variation of observation density (87/22 versus 40/11 observation
points for h and T in scenario RWhTKL) over time. Generally, the overall RMSE(h) values for the validation
period are relatively high compared to the assimilation period. Figure 18 additionally shows the distribution
of RMSE(h) at observation points for the different updating scenarios. It can be seen that the relatively high
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overall errors are caused by a certain percentage of outliers and that the median RMSE(h) values are much
lower than the RMSE(h) that is calculated for all observation points (Figure 17). These outliers are mainly
located in the eastern part of the model domain where the observation density is low and the groundwater

dynamics are not much influ-
enced by the management activ-
ities. These relatively high
RMSE(h) values point to a system-
atic model error in this region
that is probably caused by the
unsaturated conditions that are
present in the first model layers
which lead to some nonlinearities
in this model region and by an
insufficient parameterization of
leakage parameters. However,
when the scenarios with updated
parameters are compared with
the unconditional simulation
they show a significant reduction
in the overall RMSE(h) (on aver-
age 0.67 m or 49%) and in the
median values of RMSE(h)
(approximately 0.40 m or 59%).
For groundwater temperatures
the updated parameter ensem-
bles do not show such a large
RMSE reduction as piezometric
heads. An improvement is clearly
visible but it is lower in magni-
tude compared to piezometric

Figure 16. Mean fields of hydraulic conductivity after the last assimilation cycle for parameter update without localization and with localiza-
tion for two localization length scales k (2000 and 3000 m). As a comparison the average initial field of hydraulic conductivities is shown.
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head data (average RMSE(T) reduction: 0.2�C or 15%). From the temporal evolution of RMSE(T) it can not
clearly be distinguished which of the updating scenarios performs better throughout the validation period.
In the first phase the scenarios with a T update in the assimilation period have lower errors than the ensem-
ble without T update. However, in the last phase of the validation period this relationship reverses and the
ensemble for RWhKL gives better results than the one for RWhTKL.

When the measurement error is increased during the assimilation period, RMSE(h) increases for an event of
increased groundwater withdrawal around time step 100 but is very similar to the ensemble with lower
measurement error for the rest of the validation period. For scenario RWhTKL, the reduction of observation
density lead to a slight increase in RMSE(h) (see Figure 18). However, RMSE(T) values were equal or lower for
the simulations with reduced observation points compared to the simulation with all available observation
points.

Localization has almost no effect in terms of RMSE(T), only the spread of residuals is a bit higher for the sce-
narios with localization. A stronger effect of localization was found for RMSE(h) where the ensembles with
localization show significantly higher values. The relatively constant bias between the scenarios with and
without localization suggests that there is a systematic misinterpretation in the groundwater dynamics for
the localized ensembles. This systematic bias could be related to the effect of localization on the estimation
of L fields. When localization is used, the parameter fields for L are not constrained as well as for the simula-
tions without localization. This leads to a higher uncertainty in simulated exchange fluxes which directly
affects the mass balance in the aquifer and biases the predicted groundwater levels. In order to investigate
this in more detail we repeated the scenario with a localization length of 2000 m with variable localization
length scales for each state/parameter couple. We set the localization length scale between L and the states
variables to a value of 10,000 m in order to reduce the effect of localization on the leakage parameters. The
correlation length scale between h and h/K were increased to 5000 m/3000 m and the correlation length
scale between T and T/K remained at 2000 m. Results showed that the updated parameter fields with this
setup lead to similar RMSE(h) values as the simulation without localization (for the validation period). At the
same time, RMSE(T) is comparable to the simulation with a uniform localization length scale of 2000 m.

5. Discussion

Results for the synthetic experiments suggest that a joint assimilation of piezometric heads and ground-
water temperatures with EnKF principally can lead to an improvement in the estimation of subsurface
parameters compared to an assimilation of piezometric head data alone. Assimilated temperatures mainly
gave additional information on the spatial distribution of river-aquifer exchange and the corresponding
leakage parameters whereas assimilated piezometric head data gave information on the overall magnitude
of water exchange. This relationship was not so clear for the real-world data of the Limmat aquifer. In this
case, the additional assimilation of groundwater temperatures also led to a certain reduction of the uncer-
tainty for the spatial distribution of leakage coefficients compared to an assimilation of piezometric head
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data alone. However, this additional restriction of parameter values did obviously not have a persistent
effect on the state predictions. This could be seen from the validation runs with updated parameter fields
with and without assimilation of groundwater temperatures which gave very similar results in terms of tem-
perature and piezometric head predictions. Generally, the model for the real-world case seems to already
capture the most important system dynamics with respect to heat transport. This becomes obvious from
the relatively low errors for the unconditional simulations (average RMSE(T) of about 1.5�C) and also from
the simulated values at the observation points which already capture the seasonal temperature dynamics
that were measured.

However, from the assimilation experiments for the real-world case it also became obvious that the model
dynamics for some parts of the model could not be corrected well with EnKF. This observation especially
refers to the temperature dynamics monitored at two multilevel piezometers south of the recharge basins
and recharge wells. At these locations, the model indicated a small seasonal temperature variation during
the assimilation and validation period but the measured groundwater temperatures are nearly constant for
both periods. In the simulations these piezometers seem to be influenced by the artificial recharge which
causes the seasonal temperature variation but this does not reflect the true conditions in that area. EnKF was
obviously not able to adapt model parameters to adjust model dynamics for this area toward the true condi-
tions. From geological surveys for the Hardhof area it is known that there are some channel structures within
the Hardhof area which facilitate preferential flow conditions for a part of the managed site. These geological
structures are not included in the initial ensemble of K values which was assumed to be multi-Gaussian and
hence does not include a possible layering or non-Gaussian structures that could be present at this site. Our
results emphasize that such errors in the model structure can only partly be compensated by data assimila-
tion (i.e., only during the assimilation period). Furthermore, from the assimilation of head data alone this spe-
cific model structural error (possible wrong parameterization of K values south of the recharge wells) was not
detected which is possibly attributed to the fact that heat transport is more sensitive to the 3-D aquifer struc-
ture than groundwater flow. Thus, these results show that the additional assimilation of temperature data
can aid in a better understanding of the model dynamics and possible structural errors.

The results also emphasize that the application of EnKF for real-world data is accompanied by a higher
degree of uncertainty than for synthetic studies which could reduce the effectiveness of the method. The
large majority of published studies on subsurface hydrological inverse modeling and data assimilation is
synthetic and the outcome of those studies is therefore overoptimistic concerning the impact of condition-
ing to measurement data on improved model predictions. The differences in the worth of conditioning
data for the transition from synthetic to real-world cases becomes apparent in this study because the syn-
thetic setup indicated a potential improvement in parameter estimation whereas for the real-world setup
there is no direct indication that the additional assimilation of groundwater temperatures improves the esti-
mation of unknown hydraulic properties.

Another issue that became apparent from the joint assimilation of heads and temperatures is that the pres-
ervation of ensemble variance (or the effect of filter inbreeding) is different for these two variables. For
hydraulic heads, a certain degree of variability is maintained throughout the assimilation experiments due
to the highly uncertain parameter fields and the fast hydraulic reaction of the aquifer toward changes in
the boundary conditions. For groundwater temperatures, a relatively fast decrease of ensemble variance is
visible from the experiments. This is caused by the fact that heat propagation is a slower process and there-
fore the buildup of variance in temperature between the updating cycles is retarded compared to hydraulic
heads. The problem of filter inbreeding for temperatures could principally be compensated by different
measures, e.g., by increasing the ensemble size, by introducing more variability in the boundary conditions
for heat transport or by inflating the ensemble before each updating step. Increasing of the ensemble size
is problematic in this setup because the computational demand for the coupled flow and heat transport
simulations with 128 ensemble members is already very high. Introducing more uncertainty in the bound-
ary conditions would be possible but this additional source of uncertainty would still propagate slowly
through the aquifer. Therefore, we decided to repeat the simulation of scenario RWhTKL including covariance
inflation with a constant inflation factor [Hamill et al., 2001] before each updating step. In this simulation
each ensemble member of both state variables was inflated by a constant factor of 1.1 around its mean
value before the updating step with EnKF. Figure 19 gives an impression on the development of RMSE(h)
and RMSE(T) for scenario RWhTKL with and without covariance inflation. The errors for hydraulic heads are
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slightly higher when covariance inflation is used whereas there is some improvement at certain time peri-
ods for groundwater temperatures. This underpins that both state variables show a different evolution of
ensemble variance where the variability in hydraulic heads is still adequate for updating with EnKF because
an increase of variability by inflating the ensemble lead to slightly higher errors whereas an increase of
ensemble variance for groundwater temperatures had a positive effect on the prediction capability of the
model. The highest improvements for groundwater temperatures were achieved during the period of rising
groundwater temperatures which indicates that there is a deficiency in ensemble variance during spring
time when river and groundwater temperatures are nearly equal.

Localization had a relatively clear effect on the estimation of states and parameters for the synthetic experi-
ments. Here, localization could reduce the effect of spurious correlation during the assimilation with EnKF.
For the real-world case this relationship is not so clear as for the synthetic case. In the real-world application
the model dynamics are more complicated and also the spatial distribution of observation points is not as
regular as for the synthetic model setup. The comparison of covariance structures for piezometric heads
and groundwater temperatures showed that there are large differences concerning the spatial correlation
for the two variables. It was also found that localization can greatly affect the prediction of exchange fluxes
between river and aquifer when it is applied for the estimation of leakage parameters. For the model setup
of the real-world case, the initial ensemble of leakage coefficients was highly variable and the observation
points were not distributed evenly along the river reach. When localization is used for such conditions it is
not possible to constrain the parameters that are very distant from the observations which could then lead
to a significant misinterpretation of exchange fluxes. Therefore, a localization scheme that uses only one
length scale for all variables is probably too generalized for the application in the real-world case. For the
different state variables, it seems desirable to introduce a separate localization length scale k for piezomet-
ric heads and for groundwater temperatures because their covariance structures vary considerably. Addi-
tionally, the relationship between the ensemble variance of model parameters and the localization scheme
should be considered carefully before localization is applied in data assimilation with EnKF. For example,
the results for applying localization to river bed properties show that when the initial ensemble spread is
very high this can lead to a systematic bias between model predictions and measurement data because the
highly variable parameters in some parts of the model cannot be updated anymore when localization is
used. Results for the application of variable-dependent localization length scales suggest that introducing
such a localization scheme makes the assimilation more flexible with respect to the specific model condi-
tions and variables. The application of localization on the update of hydraulic conductivities seems to have
a more positive effect than for leakage parameters because the tendency toward relatively extreme values
for hydraulic conductivities with high spatial variations was reduced during the updating procedure. For
hydraulic conductivity, the observation points were distributed more evenly over the model domain and
also the initial ensemble was better constrained compared to the initial ensemble of leakage coefficients.
Thus, it is concluded that the application of distance-dependent localization requires a careful tuning and
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and without constant covariance inflation.
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adaption toward the specific conditions of a model. This adaption should consider the estimation of the var-
iability of model parameters, the specific covariance structures of the model states and parameters as well
as the availability and spatial distribution of observations.

6. Conclusions

In this study, we applied the ensemble Kalman filter to jointly assimilate piezometric heads and ground-
water temperature data into a managed river-aquifer system. A synthetic model of a river-aquifer system as
well as a real-world model of the Limmat aquifer in Zurich were used to identify the usefulness of this data
assimilation approach for the real-time prediction of aquifer states and the identification of hydraulic sub-
surface parameters. For the real-world case, an extensive data set of head and temperature measurements
was available for verification. Results for the synthetic river-aquifer model which mimics a losing stream
problem through groundwater withdrawal showed that the joint assimilation of piezometric heads and
groundwater temperatures resulted in the best estimate of hydraulic properties (i.e., hydraulic conductiv-
ities and leakage coefficients). Conditioning of parameters on hydraulic head data lead to a RMSE reduction
of 30% for hydraulic conductivities and 73% for leakage coefficients compared to the initial parameter
ensembles. An additional assimilation of temperature data led to a total RMSE reduction of 36% and 77%,
respectively. Assimilated piezometric head data gave information on the magnitude of river-aquifer
exchange fluxes and corrected for a bias in the leakage parameters. Assimilation of temperature data mainly
led to a better characterization of the spatial distribution of leakage parameters. Results for the Limmat
aquifer indicate that the prediction of hydraulic heads and groundwater temperatures can be significantly
improved through data assimilation with EnKF under real-world conditions. The best results were obtained
with a simultaneous update of model states and parameters (average RMSE reduction of 74% and 64% for
heads and temperatures respectively). However, validation experiments revealed that for the real-world
case most of the improvement of model parameters is due to the assimilation of hydraulic head data with
no significant additional improvement by assimilating temperature data. Nevertheless, the conditioning of
parameters on hydraulic heads and temperatures lead to an average RMSE reduction of 49% for heads and
15% for temperatures in the validation period (compared to unconditioned parameters). The effect of
distance-dependent localization was relatively straightforward for the synthetic river-aquifer system
because it could easily be identified from the updated parameter fields that nonphysical parameter updates
were suppressed through the tapering with the localization function. For the real-world case, localization
also seems to have a significant impact on the updated parameter fields. This was mainly observed for the
fields of aquifer hydraulic conductivities where localization lead to a relatively strong smoothing effect com-
pared to the updating scheme without localization. This smoothing also prevented the buildup of extremer
parameter values which was observed for the standard EnKF. However, it also became clear that the local-
ization limit should be carefully chosen in order to honor the different physical relationships of model varia-
bles. Additionally, the effective range of the localization function and the variance of the initial parameter
ensemble have to be balanced very carefully. Further research is required to find an optimal strategy for the
simultaneous localization of different model variables under complex system dynamics.
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