000151893 001__ 151893
000151893 005__ 20240712100955.0
000151893 0247_ $$2doi$$a10.5194/acp-14-2789-2014
000151893 0247_ $$2ISSN$$a1680-7316
000151893 0247_ $$2ISSN$$a1680-7324
000151893 0247_ $$2Handle$$a2128/8013
000151893 0247_ $$2WOS$$aWOS:000334104700004
000151893 037__ $$aFZJ-2014-01743
000151893 041__ $$aEnglish
000151893 082__ $$a550
000151893 1001_ $$0P:(DE-Juel1)129421$$aWildt, J.$$b0$$eCorresponding author
000151893 245__ $$aSuppression of new particle formation from monoterpene oxidation by NO<sub>x</sub>
000151893 260__ $$aKatlenburg-Lindau$$bEGU$$c2014
000151893 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1421917713_12878
000151893 3367_ $$2DataCite$$aOutput Types/Journal article
000151893 3367_ $$00$$2EndNote$$aJournal Article
000151893 3367_ $$2BibTeX$$aARTICLE
000151893 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000151893 3367_ $$2DRIVER$$aarticle
000151893 520__ $$aThe impact of nitrogen oxides (NOx = NO + NO2) on new particle formation (NPF) and on photochemical ozone production from real plant volatile organic compound (BVOC) emissions was studied in a laboratory setup. At high NOx conditions ([BVOC] / [NOx] < 7, [NOx] > 23 ppb) new particle formation was suppressed. Instead, photochemical ozone formation was observed resulting in higher hydroxyl radical (OH) and lower nitrogen monoxide (NO) concentrations. When [NO] was reduced back to levels below 1 ppb by OH reactions, NPF was observed. Adding high amounts of NOx caused NPF to be slowed by orders of magnitude compared to analogous experiments at low NOx conditions ([NOx] ~300 ppt), although OH concentrations were higher. Varying NO2 photolysis enabled showing that NO was responsible for suppression of NPF. This suggests that peroxy radicals are involved in NPF. The rates of NPF and photochemical ozone production were related by power law dependence with an exponent approaching −2. This exponent indicated that the overall peroxy radical concentration must have been similar when NPF occurred. Thus, permutation reactions of first-generation peroxy radicals cannot be the rate limiting step in NPF from monoterpene oxidation. It was concluded that permutation reactions of higher generation peroxy-radical-like intermediates limit the rate of new particle formation.In contrast to the strong effects on the particle numbers, the formation of particle mass was substantially less sensitive to NOx concentrations. If at all, yields were reduced by about an order of magnitude only at very high NOx concentrations.
000151893 536__ $$0G:(DE-HGF)POF2-89582$$a89582 - Plant Science (POF2-89582)$$cPOF2-89582$$fPOF II T$$x0
000151893 536__ $$0G:(DE-HGF)POF2-233$$a233 - Trace gas and aerosol processes in the troposphere (POF2-233)$$cPOF2-233$$fPOF II$$x1
000151893 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000151893 7001_ $$0P:(DE-Juel1)16346$$aMentel, T. F.$$b1
000151893 7001_ $$0P:(DE-Juel1)4528$$aKiendler-Scharr, A.$$b2
000151893 7001_ $$0P:(DE-HGF)0$$aHoffmann, T.$$b3
000151893 7001_ $$0P:(DE-Juel1)6627$$aAndres, S.$$b4
000151893 7001_ $$0P:(DE-Juel1)144056$$aEhn, M.$$b5
000151893 7001_ $$0P:(DE-Juel1)129345$$aKleist, E.$$b6
000151893 7001_ $$0P:(DE-Juel1)3588$$aMüsgen, Peter$$b7
000151893 7001_ $$0P:(DE-Juel1)16347$$aRohrer, F.$$b8
000151893 7001_ $$0P:(DE-HGF)0$$aRudich, Y.$$b9
000151893 7001_ $$0P:(DE-Juel1)142073$$aSpringer, M.$$b10
000151893 7001_ $$0P:(DE-Juel1)5344$$aTillmann, R.$$b11
000151893 7001_ $$0P:(DE-Juel1)16324$$aWahner, A.$$b12
000151893 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-14-2789-2014$$gVol. 14, no. 6, p. 2789 - 2804$$n6$$p2789 - 2804$$tAtmospheric chemistry and physics$$v14$$x1680-7324$$y2014
000151893 8564_ $$uhttps://juser.fz-juelich.de/record/151893/files/FZJ-2014-01743.pdf$$yOpenAccess
000151893 909CO $$ooai:juser.fz-juelich.de:151893$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000151893 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000151893 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000151893 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000151893 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000151893 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000151893 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000151893 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000151893 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000151893 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000151893 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000151893 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000151893 915__ $$0StatID:(DE-HGF)1020$$2StatID$$aDBCoverage$$bCurrent Contents - Social and Behavioral Sciences
000151893 9141_ $$y2014
000151893 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129421$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000151893 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)16346$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000151893 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)4528$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000151893 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)6627$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000151893 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144056$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000151893 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129345$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000151893 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)16347$$aForschungszentrum Jülich GmbH$$b8$$kFZJ
000151893 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142073$$aForschungszentrum Jülich GmbH$$b10$$kFZJ
000151893 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)5344$$aForschungszentrum Jülich GmbH$$b11$$kFZJ
000151893 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)16324$$aForschungszentrum Jülich GmbH$$b12$$kFZJ
000151893 9132_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0
000151893 9132_ $$0G:(DE-HGF)POF3-243$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$aDE-HGF$$bMarine, Küsten- und Polare Systeme$$lAtmosphäre und Klima$$vTropospheric trace substances and their transformation processes$$x1
000151893 9131_ $$0G:(DE-HGF)POF2-89582$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vPlant Science$$x0
000151893 9131_ $$0G:(DE-HGF)POF2-233$$1G:(DE-HGF)POF2-230$$2G:(DE-HGF)POF2-200$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vTrace gas and aerosol processes in the troposphere$$x1
000151893 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000151893 9201_ $$0I:(DE-Juel1)IEK-8-20101013$$kIEK-8$$lTroposphäre$$x1
000151893 9801_ $$aFullTexts
000151893 980__ $$ajournal
000151893 980__ $$aVDB
000151893 980__ $$aI:(DE-Juel1)IBG-2-20101118
000151893 980__ $$aI:(DE-Juel1)IEK-8-20101013
000151893 980__ $$aUNRESTRICTED
000151893 980__ $$aFullTexts
000151893 981__ $$aI:(DE-Juel1)ICE-3-20101013
000151893 981__ $$aI:(DE-Juel1)IEK-8-20101013