000151899 001__ 151899
000151899 005__ 20240709082158.0
000151899 037__ $$aFZJ-2014-01749
000151899 041__ $$aEnglish
000151899 1001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b0$$eCorresponding author$$ufzj
000151899 1112_ $$a556. WE Heraeus-Seminar; Analytical Tools for Fuel Cells and Batteries$$cPhysikzentrum Bad Honnef$$d2014-03-23 - 2014-03-25$$wGermany
000151899 245__ $$aElectron Paramagnetic Resonance Spectroscopy – Electrochemistry on an Atomic Scale
000151899 260__ $$c2014
000151899 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1395411014_11641$$xInvited
000151899 3367_ $$033$$2EndNote$$aConference Paper
000151899 3367_ $$2DataCite$$aOther
000151899 3367_ $$2ORCID$$aLECTURE_SPEECH
000151899 3367_ $$2DRIVER$$aconferenceObject
000151899 3367_ $$2BibTeX$$aINPROCEEDINGS
000151899 520__ $$aElectron Paramagentic resonance (EPR) spectroscopy is a sensitive tool to probe structural and electronic properties of paramagnetic centers. Focusing on the study of Lithium-ion batteries, this involves the monitoring of changes in oxidation states of transition-metal ions upon Lithium (de)intercalation, as well as the anti-site diffusion of these centers as a function of extended cycling and the formation of radical centers in the solid-electrolyte interphase layer. In the case of metal-air batteries, also the oxygen reduction / evolution catalyst can be monitored during operation. The information obtained, typically extends over the complete volume of a sample. In certain cases, however, also interphase-sensitive experiments can be performed.
Temperature-dependent EPR experiments typically allow to asses also dynamic properties, by exploiting the variation of the EPR susceptibility that can be used to estimate activation barriers for ionic motion. Information on electronic conductivities can be gathered by analyzing anisotropic line-shape functions, such as the Dysonian line shape for instance.
References
[1] P. Jakes, G. Cohn, Y. Ein-Eli, F. Scheiba, H. Ehrenberg, R.-A. Eichel: „Limitation of Discharge Capacity and Mechanisms of Air-Electrode Deactivation in Silicon–Air Batteries“, Chem. Sus. Chem. 5 (2012) 2278–2285
[2] P. Jakes, E. Erdem, A. Ozarowski, J. van Tol, R. Buckan, D. Mikhailova, H. Ehrenberg, R.-A. Eichel: “Local coordination of Fe3+ in Li[Co0.98Fe0.02]O2 as cathode material for lithium ion batteries—multi-frequency EPR and Monte-Carlo Newman-superposition model analysis“, Phys. Chem. Chem. Phys. 13 (2011) 9344–9352
[3] E. Erdem, V. Mass, A. Gembus, A. Schulz, V. Liebau-Kunzmann, C. Fasel, R. Riedel, R.-A. Eichel: “Defect structure in lithium-doped polymer-derived SiCN ceramics characterized by Raman and electron paramagnetic resonance spectroscopy“, Phys. Chem. Chem. Phys. 11 (2009) 5628–5633
000151899 536__ $$0G:(DE-HGF)POF2-123$$a123 - Fuel Cells (POF2-123)$$cPOF2-123$$fPOF II$$x0
000151899 536__ $$0G:(DE-HGF)POF2-152$$a152 - Renewable Energies (POF2-152)$$cPOF2-152$$fPOF II$$x1
000151899 7001_ $$0P:(DE-Juel1)156296$$aJakes, Peter$$b1$$ufzj
000151899 7001_ $$0P:(DE-HGF)0$$aGranwehr, Josef$$b2
000151899 909CO $$ooai:juser.fz-juelich.de:151899$$pVDB
000151899 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000151899 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156296$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000151899 9131_ $$0G:(DE-HGF)POF2-123$$1G:(DE-HGF)POF2-120$$2G:(DE-HGF)POF2-100$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lRationelle Energieumwandlung und -nutzung$$vFuel Cells$$x0
000151899 9131_ $$0G:(DE-HGF)POF2-152$$1G:(DE-HGF)POF2-150$$2G:(DE-HGF)POF2-100$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lTechnologie, Innovation und Gesellschaft$$vRenewable Energies$$x1
000151899 9141_ $$y2014
000151899 920__ $$lyes
000151899 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
000151899 980__ $$aconf
000151899 980__ $$aVDB
000151899 980__ $$aI:(DE-Juel1)IEK-9-20110218
000151899 980__ $$aUNRESTRICTED
000151899 981__ $$aI:(DE-Juel1)IET-1-20110218