001     151899
005     20240709082158.0
037 _ _ |a FZJ-2014-01749
041 _ _ |a English
100 1 _ |a Eichel, Rüdiger-A.
|0 P:(DE-Juel1)156123
|b 0
|u fzj
|e Corresponding author
111 2 _ |a 556. WE Heraeus-Seminar; Analytical Tools for Fuel Cells and Batteries
|c Physikzentrum Bad Honnef
|d 2014-03-23 - 2014-03-25
|w Germany
245 _ _ |a Electron Paramagnetic Resonance Spectroscopy – Electrochemistry on an Atomic Scale
260 _ _ |c 2014
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1395411014_11641
|2 PUB:(DE-HGF)
|x Invited
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a INPROCEEDINGS
|2 BibTeX
520 _ _ |a Electron Paramagentic resonance (EPR) spectroscopy is a sensitive tool to probe structural and electronic properties of paramagnetic centers. Focusing on the study of Lithium-ion batteries, this involves the monitoring of changes in oxidation states of transition-metal ions upon Lithium (de)intercalation, as well as the anti-site diffusion of these centers as a function of extended cycling and the formation of radical centers in the solid-electrolyte interphase layer. In the case of metal-air batteries, also the oxygen reduction / evolution catalyst can be monitored during operation. The information obtained, typically extends over the complete volume of a sample. In certain cases, however, also interphase-sensitive experiments can be performed. Temperature-dependent EPR experiments typically allow to asses also dynamic properties, by exploiting the variation of the EPR susceptibility that can be used to estimate activation barriers for ionic motion. Information on electronic conductivities can be gathered by analyzing anisotropic line-shape functions, such as the Dysonian line shape for instance. References [1] P. Jakes, G. Cohn, Y. Ein-Eli, F. Scheiba, H. Ehrenberg, R.-A. Eichel: „Limitation of Discharge Capacity and Mechanisms of Air-Electrode Deactivation in Silicon–Air Batteries“, Chem. Sus. Chem. 5 (2012) 2278–2285 [2] P. Jakes, E. Erdem, A. Ozarowski, J. van Tol, R. Buckan, D. Mikhailova, H. Ehrenberg, R.-A. Eichel: “Local coordination of Fe3+ in Li[Co0.98Fe0.02]O2 as cathode material for lithium ion batteries—multi-frequency EPR and Monte-Carlo Newman-superposition model analysis“, Phys. Chem. Chem. Phys. 13 (2011) 9344–9352 [3] E. Erdem, V. Mass, A. Gembus, A. Schulz, V. Liebau-Kunzmann, C. Fasel, R. Riedel, R.-A. Eichel: “Defect structure in lithium-doped polymer-derived SiCN ceramics characterized by Raman and electron paramagnetic resonance spectroscopy“, Phys. Chem. Chem. Phys. 11 (2009) 5628–5633
536 _ _ |a 123 - Fuel Cells (POF2-123)
|0 G:(DE-HGF)POF2-123
|c POF2-123
|x 0
|f POF II
536 _ _ |a 152 - Renewable Energies (POF2-152)
|0 G:(DE-HGF)POF2-152
|c POF2-152
|x 1
|f POF II
700 1 _ |a Jakes, Peter
|0 P:(DE-Juel1)156296
|b 1
|u fzj
700 1 _ |a Granwehr, Josef
|0 P:(DE-HGF)0
|b 2
909 C O |o oai:juser.fz-juelich.de:151899
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)156123
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)156296
913 1 _ |a DE-HGF
|b Energie
|l Rationelle Energieumwandlung und -nutzung
|1 G:(DE-HGF)POF2-120
|0 G:(DE-HGF)POF2-123
|2 G:(DE-HGF)POF2-100
|v Fuel Cells
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
913 1 _ |a DE-HGF
|b Energie
|1 G:(DE-HGF)POF2-150
|0 G:(DE-HGF)POF2-152
|2 G:(DE-HGF)POF2-100
|v Renewable Energies
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
|l Technologie, Innovation und Gesellschaft
914 1 _ |y 2014
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-9-20110218
|k IEK-9
|l Grundlagen der Elektrochemie
|x 0
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-9-20110218
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IET-1-20110218


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21