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Abstract  
 

The continuous downscaling in the dimension of MOSFETs yielded SiO2 gate oxide to be 

replaced by a high-κ material Hf based gate oxide (κ~20) in the 45 nm technology node. In 

this way, the excessive leakage current, that was the main problem in scaled devices with 

SiO2 gate oxide, was overcame and further scaling to 32 nm node was successfully 

achieved. However, for an even better performance in ultimately scaled devices (22 nm 

node and beyond) higher-κ dielectric materials are required. Due to their thermodynamic 

stability, higher-κ values (23-32), high band gap and band offsets relative to silicon, rare-

earth based ternary oxides (e.g. GdScO3, TbScO3, LaScO3, LaLuO3....) are promising die-

lectrics for CMOS applications. On the other hand, it is essential to use silicon on insulator 

(SOI) and strained silicon on insulator (sSOI) as channel materials to improve the transistor 

properties and lower the power consumption. 

In this work, as a member of rare-earth based ternary oxides, LaLuO3, LaScO3, TbScO3, 

and SmScO3 thin films deposited on silicon were structurally and electrically investigated. 

The objective of the annealing study is to find an optimized condition for an improved 

device performance. The films are stoichiometric and amorphous up to 800-1000 ºC, how-

ever, silicate formation is an inevitable process during film growth. While silicate for-

mation is triggered by oxygen annealing, applying forming gas (FG) annealing after TiN 

metal gate helps to reduce the interfacial layer (IL) thickness via scavenging of the oxygen 

from the interface. Optimization of the annealing process does not affect the κ values and 

yields to smooth C-V curves with negligible hysteresis, low oxide and interface trap 

charges and low leakage current density, which of all are good sign in terms of mobility. 

A replacement gate process was developed for the integration of LaLuO3, LaScO3, TbScO3, 

and SmScO3 into MOSFETs using SOI and sSOI substrates. Long channel p-and n-type 

MOSFETs were successfully fabricated and promising results were achieved for devices 

with LaLuO3, LaScO3 and TbScO3. For these devices an interface traps level in the range 

of 2-4x1011 (eVcm2)-1, steep subthreshold slope down to 65 mV/dec and high Ion/Ioff ratios 

up to 1010 is achieved. The sSOI n-MOSFETs show strongly enhanced drain current and 

electron mobilities with a factor of 1.8 compared to SOI reference devices. These materials 

provide similar electron and hole mobilities to the reported HfO2 and HfSiON materials, 

while could provide an advantage of higher scalability and lower leakage current density 

than HfO2 due to their higher к values.  
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Kurzfassung  
 

Die fortschreitende Miniaturisierung von MOSFETs hat dazu geführt, dass SiO2 als Gate-

Dielektrikum seit der 45 nm Technologie durch ein high-κ Material ersetzt wurde, das  auf 

Hafnium basiert (κ~20). Zu hohe Leckstromdichten, das Hauptproblem in skalierten Bau-

elementen mit SiO2, konnten so beseitigt werden und die weitere Skalierung zum 32 nm 

Technologie wurde erfolgreich durchgeführt. Für eine bessere Leistung in hochgradig ska-

lierten Bauelementen (22 nm Technologie und kleiner) werden allerdings higher-κ Dielekt-

rika benötigt. Bessere thermische Stabilität, höhere Dielektrizitätswerte (23-32), große 

Bandlücken und Bandkantensprünge relativ zu Silizium machen seltenerd-basierte ternäre 

Oxide  (z.B. GdScO3, TbScO3, LaScO3, LaLuO3....) zu attraktiven Alternativen zu Hf-ba-

sierten Dielektrika in CMOS-Anwendungen. Weiterhin ist es von großer Bedeutung, Sili-

zium auf Isolator (SOI) und verspanntes Silizium auf Isolator (sSOI) als Kanalmaterial im 

Transistor zu verwenden, um die Eigenschaften des Bauelementes zu verbessern und die 

Leistungs-aufnahme zu reduzieren. 

In dieser Arbeit wurden die seltenerd-basierten ternären Oxide LaLuO3, LaScO3, TbScO3 

und SmScO3 als dünne Schichten auf Silizium abgeschieden und strukturell und elektrisch 

charakterisiert. Weiterhin wurde eine Studie durchgeführt, in der der Einfluß einer opti-

mierten thermischen Behandlung zur Leistungsverbesserung der Bauelemente untersucht 

wurde. Die Filme sind stöchiometrisch und bis 800-1000°C thermisch stabil. Allerdings 

wird auch eine Silikatbildung in diesen Filmen festgestellt. Während diese Silikatbildung 

durch thermische Behandlung unter einer Sauerstoffatmosphäre beeinflusst wird, hilft die 

Formiergas-behandlung nach einem „metal-gate“ Prozess mit TiN die Dicke der vorhan-

denen Zwischenschicht zu reduzieren. Dies geschieht durch den sogenannten scanvenging-

Prozess. Die Optimierung dieser Temperaturbehandlung führt zu konstant hohen κ Werten 

sowie zu C-V-Kurven mit vernachlässigbarer Hysterese. Weiterhin resultieren niedrige 

Oxid- und wenige Grenzflächenladungen verbunden mit einer geringen Leckstromdichte. 

Dies alles ist positiv für hohe Mobilität in Bauelementen. 

In der Arbeit wurde ein sogenannter „replacement gate“ Prozess für die Integration von 

LaLuO3, LaScO3, TbScO3 und SmScO3 in MOSFETs auf SOI und sSOI Substraten entwi-

ckelt und eingesetzt. Langkanal p- und n-Typ MOSFETs wurden mit LaLuO3, LaScO3 und 

TbScO3 erfolgreich hergestellt und zeigten vielversprechende Resultate. Für diese Transis-

toren konnten Störstellendichten an der Grenzfläche Oxid-Silizium im Bereich von 

2-4x1011 (eVcm2)-1, steile Unterschwellenspannungssteigungen von 65 mV/dec und hohe 

Ion/Ioff Verhältnisse von bis zu 1010 erreicht werden. n-MOSFETs auf sSOI zeigen einen 

deutlich erhöhten Drainstrom und eine um den Faktor 1,8 erhöhte Elektronenmobilität ver-

glichen mit Transistoren auf SOI. Diese Materialien liefern vergleichbare Werte für die 

Elektronen- sowie Löchermobilität wie sie für HfO2 oder HfSiON berichtet werden, wobei 

sie wegen des höheren к Wertes den Vorteil besitzen, weiter skalierbar zu sein und niedri-

gere Leckstrom-dichten zu zeigen als z.B. HfO2.  
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Chapter 1 

 

Introduction 
 

The invention of transistors has led to the development of the integrated electronics era and 

transistors have become the most widely used devices in modern electronics. The idea of 

making these electronic devices available throughout the society has yielded to intensive 

research of microelectronic technology. As a consequence, the need for low cost integra-

tion, high speed and low power dissipation has guided Gordon Moore to predict the devel-

opment of integrated electronic technology and manifest Moore’s law, already in 1965 [1]. 

According to this law, the number of transistors in an integrated circuit roughly doubles 

every two years. This simple but profound statement has enabled an exponential growth in 

microelectronic industry over decades. 

The root that has been driven by Moore was reinforced by a scaling theory postulated first 

by Dennard et al. and generalized later by Baccarani et al. [2, 3]. The concept is based on 

the reduction of the dimensions of the metal-oxide-semiconductor field-effect transistors 

(MOSFETs) and interconnects of the integrated circuits, such that, gate length L and oxide 

thickness tox are reduced by a factor of 1/α. The electric field may increase by a factor of ε 

by reducing the applied voltage by a factor of 1/λ and increasing the doping concentration 

by α2/λ in the smaller devices. Hence, higher integration density and faster switching speed 

are obtained. The gate delay time (inversely proportional to switching speed) as a function 

of gate length for both, p and n-MOSFETs is shown in Fig. 1.1 [4]. The graph represents 

the enhanced performance due to the reduced dimensions of the complementary metal-

oxide semiconductor (CMOS) transistors. 

Another benefit of scaling is the reduction of the power dissipation by a factor of 1/λ2 due 

to the reduced voltage and current in each device which results in a power density of α2/λ2. 

Therefore, the only limitation of the generalized scaling theory is the selection of α>λ, 

which results in an increased power density. Nevertheless, now, almost 4 decades after 

Dennard et al.’s scaling map, the 2011 international technology roadmap of semiconductor 

(ITRS) has confirmed that since 1974 the MOSFETs has scaled with a factor of 0.7 for 

every process cycle and 0.5 every two process cycles [5]. This corresponds to device scal-

ing from 3 μm in 1975 to 22 nm in 2012. 
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Figure 1.1: The gate delay trend as function of gate length for n and p MOSFETs (taken 

from ref. [4]). 

 

Along the journey in device scaling, to improve the performance, scientists have optimized 

the source-drain [6, 7, 8], and channel/substrate materials and design [9, 10, 11]. Essen-

tially, the great achievements in the microelectronics and thus the success of down scaling 

over the last four decades are mainly based on the use of SiO2 as gate oxide, which is a gift 

of nature. SiO2 provides several advantages for CMOS processing, such as a stable, high 

quality Si-SiO2 interface with superior electrical isolation properties [12, 13]. Despite its 

low dielectric constant κ =3.9, it has served the industry with a very low defect charge 

density in the order of 1010 cm-2 and mid gap interface state density in the range of              

1010 (eVcm2)-1, both making SiO2 the best gate oxide. Due to its high band gap of ~9 eV, 

SiO2 prevents tunneling from the gate to the silicon and acts as a barrier against the diffu-

sion of impurities into the silicon substrate. However, with film thicknesses below 1.5 nm 

(90 nm technology node and beyond) the devices provided no significant performance im-

provement and SiO2 does not retain its inherited physical properties. Muller et al. have 

studied the electronic structure of 0.7-1.5 nm thick SiO2 by electron energy loss spectros-

copy (EELS) [14]. They could obtain the full band gap only for two monolayers of SiO2 

which sets an absolute minimum thickness of tmin=0.7 nm for an ideal SiO2 gate oxide. 

Below two monolayers of SiO2 oxygen atoms do not have the full arrangement of oxygen 

neighbors and cannot form the full band gap of bulk SiO2. Considering the reactions at both 

interfaces (top interface with the gate metal and bottom interface with the silicon substrate) 

and the lower surface roughness the minimum thickness increases to tmin= 1.2 nm on the 
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practical SiO2 gate oxide. On the other hand, Gou et al. has observed leakage current den-

sity higher than 1 A/cm2 on MOS capacitors with SiO2 thickness below 1.5 nm [15]. For 

MOSFETs with SiO2 thinner than 1.2 nm Timp et al. have observed a reduction in drive 

current and an increase in leakage current which increases the power consumption and 

makes further scaling impractical [16, 17]. Thus, 1.2 nm served as a practical limit for the 

SiO2 thickness. Apart from the leakage problem the reliability and Boron penetration from 

poly-silicon gate are also big issues for scaled oxides [18, 19, 20].  

In order to maintain Moore’s law on spite of the problem encountered with scaled SiO2 it 

has been suggested to use high dielectric constant materials (high-κ dielectrics, κ>3.9). 

Physically thicker high-κ films can be grown providing the same equivalent electrical oxide 

thickness (EOT), which provides significant gate leakage reduction. There has been a sig-

nificant improvement in the field of alternative high-κ dielectric [21, 22] and the first high-

κ product was Intel’s 45 nm transistor with hafnium (Hf) based gate oxides together with 

an appropriate metal gate [23].  Recently, Intel has announced the second generation of 

high-κ gates for 32 nm technology node, where the EOT has been reduced from 1 nm for 

45 nm node to 0.9 nm for 32 nm technology node [24]. The leakage current in the 45 nm 

node decreased by a factor of 5 in the n-MOSFET and 10 in the p-MOSFET as compared 

to MOSFETs with SiO2. Tomida et al. observed that Hf(1−x)SixO2 shows different κ values 

depending on the crystallization phase [25]. They observed that amorphous Hf(1−x)SixO2 

shows a κ value around 20; however, for the monoclinic phase, the κ value is 15 and as they 

increased the temperature and changed the crystallization phase from monoclinic to 

tetragonal the κ value increased to 27. Moreover, Böscke et al. [26] and Migita et al. [27] 

obtained a κ of 36 and an even higher κ value for tetragonal and cubic HfO2, respectively. 

However, the κ values of amorphous Hf-based oxides varies around 20 [28, 29].  

Although Hf based oxides have replaced SiO2 for high performance MOSFETs, the 

challenge is to continue scaling for smaller dimensions. On the other hand, it is foreseeable 

that Hf based oxide will be no long term solution, due to the band gap narrowing (<1.2 nm 

[30])  that will be faced by the aggressively scaled oxide thickness. This has already been 

issued by the 2011 ITRS, where EOT scaling below 0.7 nm and higher-κ (κ>30) are referred 

as a challenge for the next generation technology node (22 nm) [5]. 

Figure 1.2 shows the optical band gap (Eg) versus dielectric constant of possible gate 

dielectrics thermodynamically stable on silicon [31].  A general trend between the band 

gap and the κ value is obvious: as the κ value increases the band gap decreases. Among the 

materials in the graph, LaLuO3, LaScO3, SmScO3, GdScO3 and DyScO3, which are known 

as rare-earth based ternary oxides, have higher dielectric constants and a comparable band 

gap, Eg>5 eV, similar to HfO2. Apart from having higher κ, it is important to have an 

amorphous phase through out device processing. It has been shown that, LaLuO3 [32], 

LaScO3 [33] and, within this study, SmScO3  have much higher crystallization temperature 

ranging between 800-1000 ºC than HfO2 which tends to crystallize at 550 ºC.  TbScO3 as 

a rare-earth based ternary oxide has also proven to have a high dielectric constant with a 

crystallization temperature over 1000 ºC [34]. Higher κ and crystallization make those 

materials more attractive for the next generation of high-κ gate stacks. 
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Figure 1.2: Plot of optical band gap versus dielectric constant (κ) for alternative gate 

dielectric materials (from ref. [30]). 

 

The major problem with the alternative gate dielectrics is the deteriorated interface charac-

teristics which together with the intrinsic properties of the dielectric itself cause reduced 

channel mobility in high performance devices [35, 36, 37]. Germanium and III-V materials 

as high channel mobility materials seem to be a possible solution for the mobility reduction 

caused by the high-κ materials. However, this seems also challenging, due to the poorer 

interface quality for these materials. On the other hand, for the 90 nm technology node, 

strained silicon was implemented as a substrate with 1.2 nm SiO2 in order to compensate 

the mobility reduction caused by very thin gate oxide [11]. Research of MOSFETs with 

HfO2 [38] and GdScO3 [39] on silicon on insulator (SOI) and strained silicon on insulator 

(sSOI) has shown that, the mobility of sSOI devices is twice as high as for SOI devices. 

Therefore, integration of the high-κ materials with strained silicon in MOSFET devices is 

a successful technology. 

In this thesis, the structural and electrical properties of LaLuO3, LaScO3, TbScO3 and 

SmScO3 have been investigated. For the first time, their integration, has been achieved for 

p and n-MOSFET devices using both SOI and sSOI substrates. The experimental work of 

this thesis was concluded in February 2011. 
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Chapter 2: The principles of the MOS capacitors and MOSFET devices are introduced. 

The non-ideal properties in a real MOS structure and their effect on the capacitance –volt-

age (CV) characteristics are explained in detail. Characterization methods used throughout 

this thesis are also introduced in this chapter. High-κ issues with the requirements will be 

explained. 

Chapter 3: This chapter is devoted to the structural and electrical investigation of the rare 

earth based ternary oxides and the results are compared to results with HfO2 gate oxide. 

The composition and the morphology of the films are studied by Rutherford back-scattering 

spectrometry (RBS) and X-ray diffraction (XRD), respectively. The possible interfacial 

layer formation after different annealing conditions is investigated by means of X-ray pho-

toelectron spectroscopy (XPS) and time of flight secondary ion mass spectroscopy (TOF-

SIMS). On the base of electrical investigations, an optimization of low temperature anneal-

ing is studied. Post deposition annealing (PDA) and post metallization annealing (PMA) in 

oxygen and forming gas (FG) are investigated. Equivalent oxide thickness (EOT), leakage 

current density (Jg), density of interface trap charges (Dit) and oxide charge (Nox), flatband 

voltage (VFB) shift and effective work function of the metal gate were studied in detail for 

MOS capacitors with PDA and PMA.  

Chapter 4:  A replacement gate process for the fabrication of MOSFETs has been devel-

oped. For the first time n-MOSFETs with LaLuO3, LaScO3, TbScO3 and SmScO3 have 

been successfully integrated using SOI and sSOI substrates. p-MOSFETs with LaLuO3 

and LaScO3, for the first time, have also been integrated using SOI substrates. The key 

device parameters are extracted using I-V and split C-V measurements and the results are 

compared with HfO2 devices. The possible reasons for mobility degradation are discussed 

in this chapter. Gate induced drain leakage (GIDL), which is observed due to the high 

electric field, caused by very thin oxide layer (or thin high-κ) at the source-drain overlap 

region is explained and investigated in detail.    
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Chapter 2 

 

Principles of MOS devices and extraction of their 

physical parameter   

 

2.1 MOS capacitor in ideal case 

Metal-Oxide-Semiconductor (MOS) capacitors are the heart of the MOSFETs. The opera-

tion and characteristics of the MOSFET strongly depends on the MOS part. Therefore, it is 

worth first, to understand the MOS structure. Information about MOS capacitors can be 

found in many books [12, 40, 41]. In order to explain the physics behind, the MOS structure 

is assumed to be ideal, that means, free of charges and defects. Figure 2.1(a) illustrates the 

ideal MOS capacitor structure on silicon substrate, where tox is the oxide thickness and VG 

is the applied voltage to the metal gate. The detailed analysis of the MOS capacitor begins 

with the equilibrium band diagram, when the bias voltage VG=0, which is shown in Fig. 

2.1(b). At this condition, the Fermi level in the metal and silicon must be equal and the 

vacuum level must be continuous. These two requirements determine a unique energy band 

diagram for the ideal MOS capacitor.  The energy barriers presented in the figure prevent 

the free flow of carriers from the metal to the silicon or vice versa. 

 Depending on the applied voltage band bending occurs and the basic behavior of the ca-

pacitor could be observed. At equilibrium, where VG=0, there is no charge on the silicon 

surface and no electric field across the oxide layer; the bands are flat. Therefore the work 

function difference ms is equal to zero and it can be written as 

𝛷𝑚𝑠 = 𝛷𝑚 − 𝛷𝑆 = 𝛷𝑚 − (𝜒 +
𝐸𝑔

2𝑞
±𝛹𝐵) = 0                              (2.1) 

with 

𝛹𝐵 =
𝐸𝐹−𝐸𝐹𝑖

𝑞
=

𝑘𝑇

𝑞
ln⁡(

𝑁𝐴

𝑛𝑖
)                                               (2.2) 
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Figure 2.1: (a) Schematic illustration of an ideal MOS capacitor. (b) Energy-band diagrams 

of a p-MOS capacitor at equilibrium. m: metal work function, i: electron affinity of the 

insulator, χs: electron affinity of semiconductor (silicon in this case), Eg: energy gap of 

semiconductor, B: potential difference between the metal Fermi level and conduction band 

of the insulator, ΨB is the potential difference between the intrinsic Fermi level (Ei) and 

Fermi level (EF) inside the bulk, EC: conduction band EV: valance band of the semiconduc-

tor. 

where ΦS is the silicon work function, NA the acceptor doping concentration and ni the 

intrinsic carrier concentration. When VG ≠ 0 an electric field will be established in the oxide 

by the surface charge layer formed in the metal and silicon. The band bending for silicon 

at any point x in the depletion layer with respect to bulk is defined by Ψ(x) and while in the 

bulk silicon it is equal to zero (there is no band bending), at the silicon surface it is the 

surface potential Ψs, where Ψs is the potential difference between EFi measured at the bulk 

silicon and EFi taken at the surface. Depending on the applied voltage, the electron and hole 

concentration at the silicon surface can be written as 

𝑝𝑠 = 𝑝𝑝𝑜exp⁡(−𝛽𝛹)                                                 (2.3) 

𝑛𝑠 = 𝑛𝑝𝑜exp⁡(𝛽𝛹),                                                  (2.4) 

where ppo and npo are the equilibrium densities of holes and electrons, respectively, in the 

bulk of silicon and β=q/kT. Considering a p type MOS capacitor, mainly five working con-

ditions are present in the silicon.  

Accumulation (Ψs<0): When VG<0 is applied to the metal gate, an electric field occurs in 

the direction from silicon to the metal. The majority carriers, holes, are accumulated at the 

silicon surface, while the minority carriers, electrons, pushed more inside the bulk. As a 

result, the hole concentration at the surface will be larger than the one within the bulk. In 

order to preserve the charge neutrality at the silicon surface the bands bend upward.   

tox Oxide 

Metal 

      Silicon 

VG 

Ohmic contact 

qm 

(a) (b) 

qB 

qχi 

Vacuum Level 

qχs 

Eg/2 

qΨB 

EC 

EF 

EFi 

EV 
Silicon Oxide Metal 
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Flat band (Ψs=0): As the VG approaching zero, the holes leave the surface, and at VG=0 

the silicon surface becomes neutral. The electron and hole concentration at the surface is 

equal to their value in the bulk. No band bending occurs, therefore, the bands are flat.   

Depletion (ΨB> Ψs>0): For a VG>0, due to the created electric field in the direction from 

metal to silicon, the majority carrier holes are accelerated toward the bulk of silicon and 

the electron density at the silicon surface is built up. A negative space charge region is 

created at the silicon and the hole concentration at the surface becomes lower than the one 

inside the bulk and the bands bend downward. 

In a p-type silicon, the electron density is negligible for positive bias, therefore the positive 

gate charges are balanced not only by electrons, but also by ionized acceptors in the silicon 

surface depletion layer due to the depleted holes in this region. As gate bias increases, the 

depletion layer width xd widens to provide more ionized acceptors (see Fig. 2.2). 

 

Figure 2.2: The energy-band diagram of a MOS capacitor with a p-type substrate for (a) 

accumulation, (b) depletion, (c) intrinsic point and (d) inversion. 

 

Intrinsic point (Ψs= ΨB): Increasing VG results in a wider depletion region with more band 

bending. At certain VG, at the silicon surface the electron and the hole concentrations will 

be equal, hence, EFi at the surface will be equal to EF. The surface of the silicon becomes 

intrinsic with ps=ns=ni. 
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Inversion (Ψs> ΨB): The VG is sufficiently high to repel most of the holes from the surface, 

and electrons appear in the silicon surface in a larger number. In this case, an inversion 

layer is created with ps<ns and the bands continue to bend downward. At the point where 

Ψs =2ΨB strong inversion starts and the xd reaches its maximum. 

2.1.1 Theoretical capacitance of ideal MOS structure 

For a mathematical expression of the space charge density, Qs, in the depletion region, one 

has to solve the Poisson equation. Because the silicon surface is represented by the plane 

at x=0 and the bulk by positive value of x, the Poisson equation should be solved for one 

dimension. The surface potential as a function of x is the band bending Ψ(x), and is given 

by the Poisson equation in one dimension as 

𝜕2𝛹(𝑥)

𝜕𝑥2
= −

𝜌(𝑥)

𝜀𝑆
                                                        (2.5) 

where εs is the permittivity of the silicon and ρ(x) is the total charge density given by 

𝜌(𝑥) = 𝑞(𝑁𝐷
+ − 𝑁𝐴

− + 𝑝𝑝 − 𝑛𝑝)                                         (2.6) 

𝑁𝐷
+ and 𝑁𝐴

− are the densities of ionized donors and acceptors, respectively. Because in bulk 

silicon the charge neutrality must exist, Ψ(x) and ρ(x) should be equal to zero, therefore, 

𝑁𝐷
+ − 𝑁𝐴

− = 𝑛𝑝 − 𝑝𝑝                                                   (2.7) 

For any value of Ψ(x) according Equations 2.2 and 2.3 the difference between free carriers 

is 

𝑝𝑝 − 𝑛𝑝 = 𝑝𝑝𝑜 exp(−𝛽𝛹) − 𝑛𝑝𝑜exp⁡(𝛽𝛹)                               (2.8) 

For a p-type silicon NA>>ND, ppo  NA and npo  ni
2/NA, hence, 

𝜌(𝑥) = 𝑞(
𝑛𝑖
2

𝑁𝐴
− −𝑁𝐴

− + 𝑁𝐴
−𝑒−(𝛽𝛹) −

𝑛𝑖
2

𝑁𝐴
− (𝑒

(𝛽𝛹)))                            (2.9) 

the resulting Poisson equation is obtained as 

𝜕2𝜓(𝑥)

𝜕𝑥2
= −

𝑞

𝜀𝑆
[𝑁𝐴

−(𝑒−(𝛽𝛹) − 1) −
𝑛𝑖
2

𝑁𝐴
− (𝑒

(𝛽𝛹) − 1)]                         (2.10) 

The electric field is defined as 

𝐸𝑆 = −
𝜕𝛹(𝑥)

𝜕𝑥
 ,         hence;      

𝜕𝐸𝑆

𝜕𝑥
= −

𝜌(𝑥)

𝜀𝑆
                                    (2.11) 

Solving equation 2.10 for 2.11 

𝐸𝑆 = ±
√2𝑘𝐵𝑇

𝑞𝐿𝐷
∙ √(𝑒−(𝛽𝛹) + 𝛽𝛹 − 1) + (

𝑛𝑖
2

𝑁𝐴
−)

2

(𝑒(𝛽𝛹) − 𝛽𝛹 − 1)                    (2.12) 
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where  

𝐿𝐷 = √
𝑘𝐵𝑇𝜀𝑆

𝑁𝐴
−𝑞2

                                                                 (2.13) 

is the Debye length and represents the distance over which the free carriers reduce the po-

tential from the fixed impurity ions. Using the electric field expression in Equation 2.12, 

the space charge density, 𝑄𝑆 = −𝜀𝑆𝐸𝑆 can be found as follows 

𝑄𝑠 = ±
√2𝜀𝑠𝑘𝐵𝑇

𝑞𝐿𝐷
∙ √(𝑒−(𝛽𝛹) + 𝛽𝛹 − 1) + (

𝑛𝑖
2

𝑁𝐴
−)

2

(𝑒(𝛽𝛹) − 𝛽𝛹 − 1)⁡               (2.14) 

where a positive sign is applied for accumulation and a negative sign for depletion. At the 

silicon surface, Ψ(x)→Ψs and at that point QS is a function of the surface potential Ψs. Figure 

2.3(a) represents the theoretically calculated space charge density QS as a function of the 

surface potential. The oxide capacitance Cox and the doping concentration NA are derived 

from an experimental capacitance-voltage (C-V) measurement. QS in the  
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Figure 2.3: (a) Variation of the space charge density Qs as a function of the surface 

potential Ψs for p-type silicon. (b) corresponding normalized ideal capacitance-voltage 

(C-V) curve. For low frequencies, the curve reaches the strong inversion while for high 

frequency no inversion layer is observed.  

 

accumulation region is negative and as indicated in the graph, governed by 𝑒𝛽|𝛹𝑆| . At flat 

band QS is zero. At depletion and weak inversion it is positive and governed by 𝜓𝑆
1/2

, at 

strong inversion the leading factor is again 𝑒𝛽|𝛹𝑆|. 

At the silicon depletion layer the differential capacitance C is given as 

1

𝐶
=

1

𝐶𝑜𝑥
+

1

𝐶𝐷
                                                     (2.15) 

(a) (b) 
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where Cox is the normalized oxide capacitance to the area and CD is the depletion layer 

capacitance at the semiconductor surface. Cox and CD are given as 

𝐶𝑜𝑥 =
𝜀𝑜𝑥

𝑡𝑜𝑥
     and     𝐶𝐷 = |

𝜕𝑄𝑆

𝜕𝛹𝑆
|                                         (2.16) 

where εox is the permittivity of the oxide layer while tox is its thickness. Differentiating 

Equation 2.14 over Ψs yields 

𝐶𝐷 =
𝜀𝑆

√2𝐿𝐷
∙

[1−𝑒−(𝛽𝛹𝑆)+(
𝑛𝑖
2

𝑁𝐴
−)

2

(𝑒(𝛽𝛹𝑆)−1)]

√(𝑒−(𝛽𝛹𝑆)+𝛽𝛹𝑆−1)+(
𝑛𝑖
2

𝑁𝐴
−)

2

(𝑒(𝛽𝛹𝑆)−𝛽𝛹𝑆−1)

                          (2.17) 

The combination of equations 2.15, 2.16 and 2.17 gives the complete description of the 

ideal low frequency (LF) MOS capacitor capacitance characteristics. Figure 2.3(b) illus-

trates the corresponding ideal LF normalized C-V characteristic of the space charge plotted 

in Fig. 2.3(a), for comparison the ideal high frequency (HF) normalized C-V curve is also 

added. For the negative applied gate voltage there is an accumulation of holes and because 

in this case CD >> Cox, C=Cox (from Equation 2.15). As VG becomes less negative, the hole 

density at the silicon surface will decrease and CD will be smaller, therefore the differential 

capacitance C will be smaller than Cox. For positive VG (Ψs>0) the holes are repelled from 

the surface, giving rise to the formation of a depletion layer of ionized acceptors, this region 

is called as depletion region. If the gate bias turns more positive, the depletion layer widens, 

making CD smaller and as a result C decreases. When Ψs= ΨB is satisfied the hole and 

electron densities at the surface are both equal ni. Until Ψs= 2ΨB is satisfied, the ideal LF 

and HF C-V curves are identical; above this point two possible cases are valid due to the 

minority carrier response time. The response time τR of the minority carriers in silicon at 

room temperature is ~0.01-1 sec in strong inversion [12], and they can follow the applied 

ac voltage as long as 1/ω >> τR , where ω is the frequency of the applied ac voltage. For 

low frequency C-V the minority carriers can follow the ac voltage, an inversion layer will 

be created and CD is as given in Equation 2.17. However, in case of HF, since the minority 

carriers are to slow, they cannot follow the rapidly varying ac voltage; therefore, the meas-

ured capacitance is still the depletion layer capacitance, CD. Furthermore, because at Ψs= 

2ΨB the depletion layer width reaches its maximum, xd,max, CD reaches its minimum and 

stays constant for an increased gate voltage. Therefore the depletion layer capacitance 

where Ψs2ΨB  is given as [40] 

𝐶𝐷 = √
𝜀𝑠𝑞𝑁𝐴

2𝛹𝑆
=

𝜀𝑆

𝑥𝑑,𝑚𝑎𝑥
∙                                                              (2.18) 
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2.2 Non-ideal properties in real MOS structures and their ef-

fect on C-V 
 

In the band bending explanation and calculation of the theoretical capacitance, the MOS 

structure is assumed to be free of charge, and there is no work function difference between 

the metal gate and semiconductor substrate. However, in a real capacitor, this is not the 

case! There exist interface traps, and oxide charge, and the metal work function does not 

always coincide with the semiconductor one. 

2.2.1 Interface trap charges 

Interface trapped charges Qit, or the interface trap density Dit play a major role in the oper-

ation of MOS devices. They can be produced due to the structural defects, broken bonds, 

excess oxygen and impurities. They are defects located at the Oxide-Semiconductor inter-

face and have an energy level within the semiconductor band gap. It is accepted that trap 

energy levels above the mid gap exhibits acceptor-like characteristics and those below 

midgap has donor-like characteristics [42]. Both kinds of traps could exist at the surface. 

The net charge is the sum of both types of traps and if they are symmetrically localized 

around the midgap, the net charge is zero. Depending on the applied voltage, they change 

occupancy by charge exchanging with the semiconductor, however, their respond to the 

applied voltage depends on their position; traps close to the mid gap will take longer to 

respond than those close to the band edges. They can interact with the semiconductor con-

duction band (valence band) by capturing or emitting electrons (holes). In this way, they 

can cause severe degradation in majority carrier devices by pinning the Fermi level              

(at qDit > Cox) and disabling the field effect. Even if they are not large enough to pin the 

Fermi level, they deteriorate the electric field by reducing the surface potential (band bend-

ing) which degrades the carrier concentration. Therefore, a larger gate voltage is required 

to reach the desired carrier concentration at the semiconductor surface, which results in a 

stretch-out of the C-V measurement. 

In order to give an explanation of the possible deteriorations in MOS devices, Dit should 

be extracted. In this study two methods have been used to extract Dit; a high frequency       

C-V technique (which is known as Terman’s method) and a conductance method. 

2.2.2 Oxide charges and work function differences: 

Oxide Charges: Oxide charges include the fixed oxide charge (Qf), the mobile ionic charge 

(Qm) and the oxide trapped charge (Qot) as shown in Fig. 2.4 (a). Unlike interface trapped 

charge, these charges are independent of applied gate voltage and cause a parallel shift in 

the C-V curve as compared to the ideal one (Fig. 2.5 (b)). A negative voltage shift ΔV 

indicates the presence of positive oxide charges, while a positive ΔV occurs due to negative 

oxide charges. The location of the charges defines the amount of ΔV; the closer to the 

semiconductor interface the larger ΔV will be observed. 
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Figure 2.4: (a) The oxide charges and interface trapped charge distribution within the 

oxide and the interface to semiconductor. IL represents the interfacial layer. (b) Normal-

ized theoretically calculated and experimentally measured C-V curves. ΔV voltage shift 

occurs, due to both, oxide charges and work function differences. 

 

 

The fixed charges Qf are located very close to the oxide-semiconductor interface, and are 

generally positive. These are charges, remaining after interface trap states are annealed out, 

and hardly affected by the oxide thickness. In electrical measurement, Qf can be regarded 

as charge sheet located at the oxide-semiconductor interface and their contribution the ΔV 

is  

𝛥𝑉𝑓 = −
𝑄𝑓

𝐶𝑜𝑥
                                                         (2.19) 

The oxide trapped charges Qot are associated with the defects within the oxide layer. These 

types of charge are usually initially neutral and are charged by introducing electrons or 

holes in to the oxide layer via current passing through the oxide.  The voltage shift due to 

Qot is 

𝛥𝑉𝑜𝑡 = −
𝑄𝑜𝑡

𝐶𝑜𝑥
                                                         (2.20) 

The mobile ionic charges Qm are caused by the presence of ionized metal atoms. These 

types of charge are located either at the metal-oxide interface or at the oxide semiconductor 

interface. Depending on the applied voltage, they can move back and forth through the 

oxide layer and give rise to ΔV.  These types of charge are responsible for the hysteresis 

observed in C-V measurements. They can be positive or negative and their polarity can be 

investigated by a double sweep C-V measurement. A counter-clockwise hysteresis can be 

attributed to the existence of positive mobile trapped charges, and clockwise hysteresis in-

dicates the presence of negative mobile trapped charges. Their contribution to ΔV is given 

as 

Metal 

Oxide 

Semicond. 

Mobile ionic 

charge (Qm) 

Oxide trapped 

charge (Qot) 
Fixed oxide 

charge (Qf) 

Interface trapped 

charge (Qit) 

IL +     +     +      +      +      +      +      +      + 

+     -        +       + 

-       -      +      - 

Na+ 

K+ 

(a) (b) 



 

2.3 Principles of MOSFET operation 25 

 

𝛥𝑉𝑚 = −
𝑄𝑚

𝐶𝑜𝑥
                                                        (2.21) 

The total voltage shift due to all the oxide charges is 

𝛥𝑉 = 𝛥𝑉𝑓 + 𝛥𝑉𝑜𝑡 + 𝛥𝑉𝑚 = −
𝑄𝑓+𝑄𝑜𝑡+𝑄𝑚

𝐶𝑜𝑥
 .                              (2.22) 

The oxide charges all together, may alter the threshold voltage and reduce the carrier mo-

bility via scattering. Therefore they must be understood for a correct interpretation of a C-

V curve measured on a MOS capacitor.  

Work-Function Difference: The work function difference is given in Equation 2.1 and for 

an ideal MOS capacitor it is assumed to be zero. However, if Φms ≠ 0 the experimental C-

V curve will be shifted from the theoretical one by the same amount in the gate bias. The 

polarity of Φms defines the shifting direction.  Therefore, the C-V curve will be shifted to a 

more positive voltage for Φms>0 and a negative for Φms<0. This shift is in addition to the 

oxide charges and the net flat band voltage becomes 

𝑉𝐹𝐵 = 𝛷𝑚𝑠 + 𝛥𝑉 = 𝛷𝑚𝑠 −
𝑄𝑓+𝑄𝑜𝑡+𝑄𝑚

𝐶𝑜𝑥
.                                 (2.23) 

2.3 Principles of MOSFET operation 
 

A common MOSFET is a four terminal device that consists of a semiconductor substrate 

in which opposite polarity source and drain (S/D) region are formed by ion implantation. 

The basic structure of a MOSFET with p-type Si is shown in Figure 2.5. Shallow n+ junc-

tions connect the S/D to the p-type silicon and the metal gate is separated from the silicon 

by a thin oxide layer with thickness of tox, where the MOS capacitor is present.  

As mentioned in section 2.1, for a MOS capacitor the position of the conduction and va-

lence band relative to the Fermi level is a function of the surface potential, thus the applied 

gate voltage VG. By applying an appropriate VG the surface of the semiconductor will be 

inverted and an induced space charge region will be formed at the semiconductor surface. 

This space charge region acts as the “heart” of the MOSFET by forming the channel with 

length L and allowing the current flow between S/D.  

In Fig. 2.6, the conduction band EC diagram variation depending on the applied VG and VD 

is presented.  Figure 2.6 (a) represents the condition for an ideal MOSFET, where 

VG=VD=0 and the Fermi levels of S/D and channel coincide. In this state the device is in 

its off-state. Changing the VG from zero to a value equal to VT will result in an energy 

lowering in EC (also in EV) at the surface of the channel by creating the induced space 

charge region and inverting the surface from p-type to n-type. In this case the device is in 

its on-state, but since VD is zero there will be no charge flow along  
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Figure 2.6: The Conduction-Band diagram of n-MOSFET for (a) VG.=VD=0 and (b) 

VG>VT and VD0. VD. 

 

the channel to the drain. This is the equilibrium condition and will be preserved, hence no 

change in the Fermi level will be observed. On the other hand, the threshold voltage VT is 

defined as the minimum voltage needed to create the inversion charge for switching the 

transistor on. For VG>VT, the channel is already inverted and when a small positive VD is 

applied, the EC and EV at the drain side will be lowered (nonequilibrium condition-Fig. 2.6 

(b)). In this case, electrons in the inversion layer will flow from the source to the positive 

drain terminal resulting in a lowered Fermi level in the drain side by an amount of qVD. 

Increasing VD to a more positive value will cause a larger band lowering towards the drain 

side.  

 
Figure 2.5: Schematic illustration of a MOSFET with applied gate voltage VG, drain 

voltage VD, channel length L and oxide thickness tox. 
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2.3.1 Determination of current-voltage (I-V) characteristics 

According to the charge sheet model, the inversion layer is treated as charge sheet with 

zero thickness. Based on this model, from the Gauss law, the boundary conditions on both 

sides of the charge sheet are [40] 

ℰ𝑜𝑥𝜀𝑜𝑥 = ℰ𝑠𝜀𝑠 − 𝑄𝑛                                                 (2.24) 

where Qn is the inversion charge, ℰox and ℰs are the electric fields across the oxide and 

silicon channel. For the expression of the Qn(y) throughout the channel, the surface poten-

tial Ψs at strong inversion is given as 

𝛹𝑆(𝑦) ≈ ∆𝛹𝑖(𝑦) + 2𝛹𝐵                                                 (2.25) 

where ΔΨi is the channel potential with respect to the source end. At the drain end, 

ΔΨi=VD. The electric fields can be expressed as 

ℰ𝑜𝑥 =
𝑉𝐺−𝛹𝑆

𝑡𝑜𝑥
    and ℰ𝑆 = √

2𝑞𝑁𝐴𝛹𝑠

𝜀𝑆
                                          (2.26) 

Solving Equation 2.24 for Qn(y) by using Equation 2.25-26 yields 

|𝑄𝑛(𝑦)| = [𝑉𝐺 − 𝑉𝐹𝐵 − ∆𝛹İ(𝑦) − 2𝛹𝐵]𝐶𝑂𝑋 −√2𝜀𝑆𝑞𝑁𝐴[∆𝛹İ(𝑦) + 2𝛹𝐵].        (2.27) 

In Equation 2.27 VG is replaced with VG-VFB in order to compensate the voltage shift due 

to the oxide charges and work function difference. Now it is possible to define the channel 

current at any y position along the channel, such that [40], 

𝐼𝐷 = 𝑊|𝑄𝑛(𝑦)|𝑣(𝑦)                                                (2.28) 

where W is the channel width and v(y) is the average carrier velocity. Solving Equation 

2.28 using Equation 2.27 results for ID at the drain edge 

𝐼𝐷 =
𝑊

𝐿
𝜇𝑛𝐶𝑜𝑥 {(𝑉𝐺 − 𝑉𝐹𝐵 − 2𝛹𝐵 −

𝑉𝐷

2
) 𝑉𝐷 −

2

3

√2𝜀𝑆𝑞𝑁𝐴

𝐶𝑜𝑥
[(𝑉𝐷 + 2𝛹𝐵)

3/2 − (2𝛹𝐵)
3/2]}. 

(2.29) 

where μn is the carrier mobility which is assumed to be constant along the channel. Accord-

ing to Equation 2.29, for a given VG the drain current increases linearly with drain voltage 

(linear region), then gradually levels off (non-linear region), reaches a peak point (begin-

ning of the saturation region) and drops with VD. This drop of is the evidence of the van-

ished inversion layer at the drain side due to the applied VD. Equation 2.29 is valid only for 

values of VD for which the inversion layer still exists. Therefore, for a complete explanation 

of an I-V characteristics it is better to explain the linear and saturation regions with separate 

equations, such as: for small VD Equation 2.29 could be linearized which gives explanation 

for  nonsaturation as 
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𝐼𝐷 =
𝑊

𝐿
𝜇𝑛𝐶𝑜𝑥 (𝑉𝐺 − 𝑉𝑇 −

𝑉𝐷

2
) 𝑉𝐷                                  (2.30) 

with the threshold voltage, VT , given by  

𝑉𝑇 = 𝑉𝐹𝐵 + 2𝛹𝐵 +
2√𝜀𝑆𝑞𝑁𝐴𝛹𝐵

𝐶𝑜𝑥
                                      (2.31) 

For larger VD, that is VD>VD(saturation), Equation 2.29 describes saturation by 

𝐼𝐷𝑠𝑎𝑡 =
1

2𝑛
∙
𝑊

𝐿
𝜇𝑛𝐶𝑜𝑥(𝑉𝐺 − 𝑉𝑇)

2                                      (2.32) 

where n is the body factor and equal to 1+CD/Cox with CD depletion layer capacitance which 

is given in Equation 2.18. Combining Equation 2.30 and 2.32 provides the complete 

explanation of the I-V characteristics as shown in Fig. 2.7 (a) for variable VD (output) and 

(b) for variable VG (transfer). In both cases, increasing the second variable (VG for output, 

and VD for tranfer) yields to an increase in the drain current ID. 
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Figure 2.7: (a) Current-drain voltage (Output) characteristics of a MOSFET defined 

with different regions. (b) Current-gate voltage (Transfer) characteristics in a logarith-

mic scale of a MOSFET. 

 

2.4 Electrical characterization 

This part is devoted to the explanation of characterization techniques which are needed for 

the complete analysis of rare-earth based ternary oxide MOS capacitors and MOSFET de-

vices. For the MOS capacitor analysis high frequency C-V measurements are used. The 

extraction of the equivalent oxide thickness (EOT), κ values, and defect related oxide layer 

is all carried out from the C-V curves. The I-V curves obtained from MOSFET devices are 

used to derive the subthreshold slope S, threshold voltage VT and, together with a split       

C-V measurement to extract the carrier mobility.  

(a) (b) 
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2.4.1 MOS Capacitor characterization 

EOT and the dielectric constant κ:  

C-V curves provide all the necessary information about the dielectric material. Once the  

C-V curves of MOS capacitors formed with different high-κ dielectric thicknesses (thigh-κ) 

are obtained, it is possible to calculate the capacitance equivalent thickness CET from the 

maximum capacitance Cacc as 

𝐶𝐸𝑇 =
𝐴𝜀𝑜𝜅𝑆𝑖𝑂2
𝐶𝑎𝑐𝑐

=
𝜅𝑆𝑖𝑂2
𝜅ℎ𝑖𝑔ℎ−𝜅

𝑡ℎ𝑖𝑔ℎ−𝜅                               (2.33) 

where A is the area of the gate capacitor, εo is the permittivity of the vacuum and 𝜅𝑆𝑖𝑂2and 

𝜅ℎ𝑖𝑔ℎ−𝜅 the dielectric constant of SiO2 and the high-κ, respectively. CET is the theoretical 

thickness of SiO2 that is needed to achieve the equivalent capacitance density the high-κ 

capacitor. Due to the reaction with the underlying silicon, there could exist a lower-κ inter-

facial layer (IL) which reduces Cacc, and therefore, increases CET. Adding this IL to the 

obtained capacitance will result in 

 𝐶𝐸𝑇 =
𝐴𝜀𝑜𝜅𝑆𝑖𝑂2
𝐶𝑎𝑐𝑐

=
𝜅𝑆𝑖𝑂2
𝜅𝐼𝐿

𝑡𝐼𝐿 +⁡
𝜅𝑆𝑖𝑂2
𝜅ℎ𝑖𝑔ℎ−𝜅

𝑡ℎ𝑖𝑔ℎ−𝜅                             (2.34) 

where 𝜅𝐼𝐿and 𝑡𝐼𝐿 are the dielectric constant and the thickness of the IL layer, respectively. 

CET does not contain quantum mechanical and depletion effects from the silicon substrate 

or the gate. According to Guha et al. [43] this effect causes a reduction of ~ 0.3-0.4 nm of 

CET which corresponds to the equivalent oxide thickness EOT. 

The high-κ dielectric constant can be extracted disregarding the contribution of the IL from 

the plot of EOT (obtained from CET-0.4 nm) as a function of physical oxide thickness. The 

slope m of the linear fit is related to the 𝜅ℎ𝑖𝑔ℎ−𝜅 as 

𝜅ℎ𝑖𝑔ℎ−𝜅 =
𝜅𝑆𝑖𝑂2
𝑚

                                                       (2.35) 

On the other hand, the intercept of the linear fit on EOT axis represents the electrical thick-

ness of the lower-κ IL. 

Extraction of Dit from high frequency C-V:  

Due to the consumption of the majority carriers by the interface traps, it takes more charges 

or applied voltage to accomplish the same Ψs as the ideal one. Therefore, the shoulder of 

the C-V curve is stretched out along the voltage axis. By comparing the theoretically ideal 

C-Ψs curve with an experimentally measured C-V the functional dependence of the surface 

potential Ψs on the gate voltage, V can be found.  

For the derivation of the theoretically ideal capacitance, the doping concentration NA and 

the oxide capacitance Cox are extracted from the experiment. Cox is the maximum capaci-

tance in the experimental C-V. NA is derived from the slope of the linear portion of 1/C2 

(V) curve as [12] 
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𝑁𝐴 = −2 ∙ [𝑞𝜀𝑆
𝑑

𝑑𝑉𝐺
(
1

𝐶2
)]

−1

                                           (2.36) 

 

Once the Cox and NA are known, the theoretical capacitance is calculated from Equation 

2.15 through 2.17. Figure 2.8 (a) and (b) represents how the Ψs-V data points are extracted 

from theoretically calculated normalized C-Ψs and experimentally measured normalized C-

V curves. These Ψs-V data points finding is repeated for every C/Cox values on the graphs, 

and then plotted as Ψs  vs gate voltage V (not shown).  
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Figure 2.8: (a) Theoretically ideal normalized capacitance vs surface potential Ψs and 

(b) experimental high frequency normalized capacitance as a function of voltage. For 

same capacitances, the corresponding (V,Ψs) data value are selected. 

 

 

Finally, using Cox, the slope, 
𝑑𝛹𝑆

𝑑𝑉
 , and the semiconductor depletion capacitance, CD, for the 

extracted Ψs from the C-V curves (Equation 2.17), the interface trap capacitance Cit is cal-

culated as [12] 

𝐶𝑖𝑡 = 𝐶𝑜𝑥 [(
𝑑𝛹𝑠

𝑑𝑉
)
−1

− 1] − 𝐶𝐷(𝛹𝑠)                                  (2.37) 

and the density of interface states Dit is found as [40] 

𝐷𝑖𝑡 =
𝐶𝑖𝑡(𝛹𝑠)

𝑞2
                                                     (2.38) 

In order to investigate the distribution of the traps over the band-gap, one should define 

how the band bending, Ψs, is related to a given position in the semiconductor band-gap. 

The energy level of the interface trap states ET above the valence band EV in a p-type sem-

iconductor is given as 

(b) (a) 
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𝐸𝑇−𝐸𝑉

𝑞
=

𝐸𝑔

2
+𝛹𝑆 −𝛹𝐵                                           (2.39) 

Using the equation given above, the semiconductor band-gap is scanned from ET-EV=0 to 

ET-EV=Eg by varying ΨS, where ΨS is the surface potential extracted from the C-V curves 

as a function of applied voltage. Finally, Dit as a function of ET-EV is plotted. 

Extraction of Dit from conductance:  

As mentioned above, the interface trap states interact with the semiconductor valence band 

or conduction band by capturing or emitting majority carriers. Considering, both, p and n-

type semiconductor in accumulation, an energy loss occurs when majority carrier holes or 

electrons at higher average energy are captured by interface trap states at a lower average 

energy level. On the other hand, in depletion, holes or electrons in filled interface trap states 

will be in a higher average energy level than those in the semiconductor. As the holes or 

electrons are emitted by the interface trap states into the semiconductor, they will again 

lose energy. These energy losses should be supplied by the applied voltage, which is meas-

ured as an equivalent parallel conductance Gp. For a ω applied frequency, the resultant loss 

Gp versus gate voltage V curve consists of a peak, which provides Dit as [44] 

𝐷𝑖𝑡 =
2.5(𝐺𝑝/𝜔)|𝑚𝑎𝑥

𝑞𝐴
                                                       (2.40) 

Extraction of the effective metal gate work function Φm,eff and the number density of 

oxide charge Nox:  

The effective work function of the metal gates on high-k dielectrics have been reported to 

be different from their vacuum level [45]. Therefore, the metal work function calculation 

is needed for a proper explanation of the flat band and threshold voltage. The extracted new 

work function is called effective work function.  

For the extraction, one needs to know VFB, which can be extrapolated from the 1/C2 graph 

as a function of gate voltage. The intercept with the x-axis of a linear fit on the depletion 

region is the VFB [12]. Taking into account Equation 2.1 and 2.23, by plotting VFB+Φs as a 

function of CET, a linear behavior is observed. The intercept on the y axis of the linear fit 

of the curve provides the effective work function of the metal gate, while the slope m of 

the fit gives the number density Nox of the oxide charge as [46] 

𝑁𝑜𝑥 =
1

𝑞
𝜅𝑠𝑖𝑜2𝜀𝑜𝑚                                                              (2.41)  

2.4.2 MOSFET characterization 

Threshold voltage: 

Because it is the minimum voltage required for switching the device on, the threshold volt-

age VT possesses importance in device operation in terms of switching speed. Due to the 
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nonlinear behavior of the ID-VG curve, it is not possible to make a unique definition for VT. 

An overview for different VT measurement techniques is given in REF [41]. In this work a 

linear extrapolation technique is used for the extraction of VT. According to this technique, 

for an applied VD, ID versus VG curve is extrapolated to ID=0, and the extrapolated VG value 

is the VT+VD determined from the intercept VG as shown in Fig. 2.9. However, this tech-

nique is sensitive to series resistance and mobility degradation. Therefore, it is applied only 

for VD<<VG where the series resistance is negligible, and to eliminate the mobility degra-

dation effect the extrapolation is done around a max ID which is deduced from the maxi-

mum peak point in transconductance gm. 
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Figure 2.9: Threshold voltage VT determination by the linear extrapolation technique. 

Subthreshold Slope:  

The region below VT is called subthreshold region and defines how fast the drain current 

ID increases with the gate voltage. In this region, the parameter which quantifies the gate 

voltage induced rapid change in ID is called the inverse subthreshold slope S. S is the volt-

age required to increase the current by one order of magnitude and is defined as 

𝑆 = (
𝑑𝑙𝑜𝑔(𝐼𝐷)

𝑑𝑉𝐺
)
−1

= ln(10)
𝑘𝐵𝑇

𝑞
(1 +

𝐶𝐷+𝐶𝑖𝑡

𝐶𝑜𝑥
)                               (2.42) 

  

Figure 2.7 (b) illustrates the determination of S from the logarithmic scale of the ID-VG 

characteristic. The minimum theoretical value of S at room temperature is determined to 

be 60 mV/decade. However S is related to the interface trap density as indicated in Equation 

2.42, which requires very small Cit to approach the theoretical value. S provides significant 

information about the trap states.  

Carrier Mobility:  

An electric field along the channel causes the carriers to drift in the channel with a certain 

drift velocity υ, which is related to the electric field by a parameter called mobility. Due to 
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the defect charge within the oxide and the impurities within the semiconductor the carriers 

are involved in collisions. The mobility is given as 

𝜇 =
𝑞𝜏𝑚

𝑚∗                                                       (2.43) 

where τ is the momentum relaxation time, that is the time between two scattering events, 

and m* is the effective mass [47]. It is clear from the Equation 2.43 that, the higher the 

charge defect or impurities the lower the τ will be, hence, lower mobility. On the other 

hand, increasing the effective mass m* will also lower the mobility, which is the reason 

why electron mobility is higher than the hole mobility. In this work two methods have been 

used for the extraction of mobility. The first one is the well known split C-V method and 

the second is the 𝐼𝐷/√𝑔𝑚 [48] method.   

Split C-V technique: Using Equation 2.30, the effective mobility in a MOSFET can be 

obtained as 

𝜇𝑒𝑓𝑓 =
𝐿

𝑊

𝐼𝐷

𝑄𝑖𝑛𝑣𝑉𝐷
                                                (2.44) 

where Qinv is the inversion charge density obtained from the integration of split C-V inver-

sion charge capacitance Cgc (gate to channel capacitance) over gate voltage. For a uniform 

channel charge, VD is typically~50mV.  

Figure 2.10 illustrates the measurement set up for split C-V measurements. The measured 

capacitance is the sum of the parasitic capacitance Cp, overlap capacitance Cov and gate to 

channel capacitance Cgc. For the elimination of Cp and Cov a correction suggested in Ref 

[49] is applied to the measured capacitance as 

𝐶𝑔𝑐(𝑉𝑔) =
𝐶𝐿2−𝐶𝐿1

𝐿2−𝐿1
𝐿2 ,                                           (2.45) 

where CL2 and CL1 are the capacitances measured from MOSFETs with different L1 and L2 

gate lengths. The effective mobility is then extracted from the corrected C-V after replacing 

ID by 

𝐼𝐷 = 1/(1 −
𝑅𝑠𝑑𝐼𝐷

𝑉𝐷
) ,                                            (2.46) 

where Rsd is the series resistance extracted according to Ref [41]. 

 

𝑰𝑫/√𝒈𝒎 technique: According to the empirical model used in Ref [50], for state of the art 

MOSFETs operated in linear region, it is suggested to use 

𝐼𝐷 =
𝜇𝑜

1+𝜃(𝑉𝐺−𝑉𝑇−
𝑉𝐷
2
)

𝑊

𝐿
𝐶𝑜𝑥 (𝑉𝐺 − 𝑉𝑇 −

𝑉𝐷

2
)𝑉𝐷                       (2.47) 
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where μo is the low field mobility and θ the mobility reduction coefficient. The 𝐼𝐷/√𝑔𝑚 

technique is based on the combination of ID(VG) and gm(VG) characteristics and allows to 

obtain the low field mobility μo without the influence of the series resistance Rsd and gate 

voltage. Plotting 𝐼𝐷/√𝑔𝑚 vs VG results in a straight line whose intercept to the x axis is 

VT+VD/2 (which is known as the charge threshold voltage, and represented with Vt) and 

whose slope A is proportional to μo. After the extraction of the whole slopes A for different 

gate length L, the extracted slope m in the graph of 1/A as function of gate length L is 

related to μo as 

𝜇𝑜 =
𝐿

𝑊

𝑚2

𝐶𝑜𝑥𝑉𝐷
                                               (2.48) 

It is clear from equation 2.47 that the effective mobility is given as 

𝜇𝑒𝑓𝑓 =
𝜇𝑜

1+𝜃(𝑉𝐺−𝑉𝑡)
                                           (2.49) 

where θ is given as [48] 

𝜃 = [𝐼𝐷/(𝑔𝑚(𝑉𝐺 − 𝑉𝑡)) − 1]/(𝑉𝐺 − 𝑉𝑡)                        (2.50) 

A typical variation of θ as a function of gate voltage VG is presented in Fig. 2.11. θ increases 

with VG and reaches a saturation only at high voltages, which is the indication of strong 

inversion. Only this saturation value is used for a correct determination of μeff. However, 

since the calculated μeff will be voltage dependent, an Rsd correction should be done on ID 

as indicated in Equation 2.46.   

 

 

 
 

Figure 2.10: Measurement set up for inversion charge capacitance Cgc. 
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Figure 2.11: Typical variation of [𝐼𝐷/(𝑔𝑚(𝑉𝐺 − 𝑉𝑡)) − 1]/(𝑉𝐺 − 𝑉𝑡) with gate voltage 

providing the value of θ. 

 

2.5 High-κ dielectrics 
Due to the need for low power and high speed application small EOT becomes extremely 

important. Downscaling of the oxide thickness has shown that it is no longer possible to 

continue with the ultrathin ~1.3 nm native oxide SiO2. Below this thickness, the key die-

lectric parameters of SiO2 degrade; boron penetration from the polysilicon gate, gate leak-

age current and channel mobility becomes critical, all of which shatter the device reliability. 

Figure 2.12 shows that, as the SiO2 gate oxide thickness is decreased, while the gate leakage 

constantly increases, however, the drain current first increases and then falls off [16]. This 

trend, for reduced SiO2 thickness, makes the further progress in CMOS application impos-

sible. The problems encountered in SiO2 below 1.5 nm are listed and reviewed in detail in 

Ref. [13, 22, 51].  

Due to the problem faced with SiO2, it was clear that SiO2 could not survive the challenge 

of EOT≤1 nm. According to Equation 2.16, where the normalized Cox to the gate area is 

defined as εox/tox (εox=εoκ) , if  SiO2 (κ=3.9) would be replaced with a high-κ material, the 

same Cox could be obtained with a physically thicker oxide and potentially lower leakage 

as demonstrated by many research groups [22, 52, 53]. However, before the implementa-

tion of the new high-κ into the CMOS application, the material should satisfy many re-

quirements. These are [13, 31, 52]; 
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Figure 2.12: n-MOSFET gate leakage current vs drain current for (a) Lg=140 nm and                

(b) Lg=70 nm (taken from ref [16]). 

 

High dielectric constant and high optical band gap and band offset:  

High dielectric constant is needed to provide the same capacitance with a thicker gate oxide. 

This will not only reduce the tunneling current, but will also allow scaling to lower values 

of EOT. A large band gap, combined with a large conduction and valence band offset (ΔEC 

and ΔEV) to silicon is among the requirements in order to prevent the carrier tunneling from 

Si to the gate or vice versa. This will eliminate the high leakage current and oxide break-

down. ΔEC>1 and ΔEV>1 are needed [54]. These criteria restrict the oxides to those of high 

band gap, such as EG5 eV. Because the κ value tends to vary inversely with the band gap 

(see Fig. 1.2) the lowest limit of the needed band gap set a limit to the materials candidate 

with maximum κ values around 25 to 35. Materials with higher κ value tend to show high 

leakage current. 

Thermodynamic stability in direct contact with Si:  

If the high-κ is unstable in contact with Si, then a IL would be formed at the high-κ Si 

interface. This undesired interfacial layer has a lower κ value and reduces the overall effec-

tive dielectric constant, which eventually limits the highest possible gate stack capacitance 

or equivalently the lowest achievable EOT. 

Interface quality:  

In a MOSFET device, the carriers are flowing in the channel in direct contact with the IL. 

Therefore, to ensure high mobility it is important to have a high quality interface in terms 

of surface roughness and interface charge defects. For the SiO2 the Dit is always in the range 

of 1010 (eVcm2)-1. However, most of the reported high-κ dielectrics show rather high 

Dit~1011-1012 (eVcm2)-1. 
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Film morphology:  

It is preferred to have an amorphous structure after device integration since poly crystalline 

structure can result in a non-uniform oxide layer and leakage path generation which finally 

results in an even higher leakage current. Most of the high-κ dielectrics are in amorphous 

state when they are deposited. However, after high temperature treatment they transform 

into polycrystalline form. Therefore, a high crystallization temperature over 1000 ºC, which 

is the temperature of device processing, is preferred. Because of their higher-κ, epitaxial 

oxides could also be used, but the difficulties encountered during growth and possible lat-

tice mismatch makes these type of oxides unfavorable. 

Gate and process compatibility:  

For a desired threshold voltage VT, there shouldn’t be any reaction between the high-κ 

dielectric and the top gate. That is, the material should be compatible with Si or metal gates. 

The published results show that, many of the high- κ investigated up to now require metal 

gates. 

The deposition process is also important for the determination of the film properties and 

quality. Although different deposition processes might yield to different results, the process 

should be CMOS compatible. 

According to these requirements, many high-κ dielectrics have been experimentally and 

theoretically investigated for more than two decades [55, 56, 57, 58]. Significant progress 

has been achieved in terms of the screening and understanding their material and electrical 

properties. As a result of the intense research hafnium oxide based materials, such as HfO2, 

HfSixOy, HfSixOyNz were proven to be the leading candidate to replace SiO2. The harvest 

of this intense work was collected by Intel, in their first 45 nm technology node [23], and 

later in 32 nm technology node [24], using an appropriate metal gate instead of poly-Si. 

Replacement of SiO2 with HfO2 based material was a milestone in the development of IC 

and the researcher are still working on both reducing EOT in HfO2 based materials and 

alternative gate dielectrics. For a lower EOT, considerable work was done on optimized Si 

surface preparation [59] and replacing of SiO2 interfacial layer by passivating HfO2 based 

oxide bottom IL with a metal oxide [60, 61], such as SrTiO3. The aim in capping the bottom 

IL is to improve the total capacitance by the higher-κ metal oxide layer. Another way of 

achieving lower EOT is, reducing the physical thicknes of IL via remote scavenging effect. 

In this process, after oxide and metal gate deposition, the metal is doped [60, 62] or just 

capped [63] with a certain metal, providing that the interface to the high-κ is not effected 

by that metal. An EOT down to 0.42 nm was achieved with these processes however the 

leakage current is almost equal to 1 A/cm2. This high leakage current could be overcome 

by using a higher-κ dielectrics which could allow long term scaling with lower EOT and 

leakage current with a thicker oxide layer. It seems that, no scaling is forever, and HfO2 

based materials will face an end as SiO2.   

According to ITRS potential solutions for thin films are given in Table 1 [5]. It is obvious 

from the table that deposition tools & methods need continuous improvement and strained 

Si for high mobility is likely to be used even after 2020. Continuous improvement on Hf 
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based oxide is obvious till the year of 2017, however; higher-κ dielectrics (κ>30) should 

also be in full production by the year of 2015. That is, the two years of process qualification 

and pre-production should be completed before that year. 

 

Table 1: Potantial solutions roadmap for CMOS (from ref. [5]). 

 

First year of IC 

production 
2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 

Hf based high-κ (High-κ 

and interface layer scaling) 

  

Higher-κ (κ>30, and band 

offset>1 eV) 

    

High-κ on non-Si high 

mobility channels (Si-Ge, 

III-V) 

    

Near mid-gap tunable WF 

electrodes 

    

Deposition tools and 

methods 

 

Strained Si for high 

mobility (local strain from 

contact etch stop, elevated 

SiGe-SiC S/D, stress 

memorization, 

replacement gate) 

 

Research required 

Development underway 

Qualification/pre-production 

Continuous improvement 

 

 

 

 

 

 

 

2.5.1 Rare-earth based ternary oxide 

Although Hf-based materials have been implemented since the 45 nm technology genera-

tion, high leakage current in scaled oxide urge the use of higher-κ dielectrics. Many high-

κ dielectrics have been investigated as potential candidates. However, due to their high 

dielectric constant and high band gap, which is the evidence of high band offset, rare earth 

( RE: Gd, Sc, La..) based ternary oxides (LaLuO3, DyScO3, TbScO3…, see Fig. 1.2) have 

attracted the highest attention for high-κ application. Therefore, in this study, as a member 

of rare-earth ternary oxide, LaLuO3, and three rare earth scandates (REScO3) LaScO3, 

TbScO3 and SmScO3 will be investigated as potential high-κ dielectrics. 
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Lanthanum lutetium oxide as high-κ candidate 

Recent results indicated that LaLuO3 is a promising higher-κ dielectric with a κ value of 32 

in the amorphous state [32]. It shows excellent thermodynamic stability on silicon 

(>1000 ºC) [32]. It fulfills the requirements with large optical band gap (> 5.5 eV), and 

large conduction and valence band offsets of 2.1 eV [31, 32] . Wang et al. [64] achieved, 

by atomic layer deposition (ALD) high quality LaLuO3 films on Si without a detectable 

interfacial layer. They obtained an EOT of 0.86 nm, which showed two orders of magnitude 

lower leakage currents than that of the SiO2 with the same EOT. Following our study, Mi-

trovic et al. [65] have investigated MBD grown LaLuO3 using TiN/LaLuO3/Si gate stack. 

They obtained, an EOT of 0.75 nm with a 7 orders of magnitude lower leakage current than 

that of SiO2 with the same EOT. Using X- ray photo electron spectroscopy (XPS) and elec-

tron energy loss spectra (EELS) they observed, however, a dual silicate/SiO2 like IL at the 

LaLuO3-Si interface. Our study on both LaLuO3 [66] and HfO2 [67] showed that, LaLuO3 

provide with smaller leakage current for a comparable EOT. Despite the observed IL, the 

obtained low EOT and leakage current favor the idea of using this material for the 14-12 nm 

technology node. 

In the meanwhile to this study, LaLuO3 layers, grown by ALD, have been also used for Ge 

devices, providing good results [68]. On the work done on p-MOSFETs fabricated on 

sSi/Si0.5Ge0.5/sSOI heterostructure, MOSFETs with LaLuO3 show similar mobility 

characteristics as the one with HfO2 [69]. 

 Rare-earth scandates 

Starting from 1954 till 1981 many researchers have synthesized and studied the crystallo-

graphic structure of many REScO3 [70, 71, 72, 73]. The first synthesizing of the entire series 

of REScO3 were done by Liferovich et al. [74] . Using powder X-Ray diffraction data, they 

compared REScO3 crystal chemistry with that of REFeO3 orthoferrite series. They found 

that, REScO3 are orthorhombic perovskites, adopting space group of Pbnm (62). On the 

other hand, due to their narrow diffraction reflections, structural perfection and homogene-

ity, single crystal REScO3 grown by Czochralski technique are considered to be one of the 

best substrates for the epitaxial growth of perovskite thin films [75]. 

The dielectric properties and crystallization behavior of entire REScO3, formed by pulsed 

laser deposition (PLD) on a LaAlO3 substrate, were investigated by Christen et al [56]. 

They observed varying crystallization temperature depending on the RE atomic number. 

The crystallization temperature varies between 650 and 800 for relatively thick films 

(>200 nm). These investigated dielectrics present band gaps higher than 5.5 eV in the crys-

talline phase. Another interesting result of their study is these dielectrics show κ>30 when 

they crystallize. They observed the highest κ value for TbScO3, κ~39, which is followed by 

SmScO3, κ~37. 

The electron energy band alignment between Si and several REScO3 (LaScO3, GdScO3 and 

DyScO3, all in amorphous form) is determined by Afanas’ev et al [76], using internal 

photoemission and photoconductivity measurement. They observed nearly the same band 

gap for all investigated dielectrics, ~ 5.6-5.7 eV. The measured conduction and valence 
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band offset at the Si-dielectric interface are 2.0±0.1 and 2.5±0.1, respectively. Similar band 

gap properties for the same dielectrics were also observed by Heeg et al. [77] and Cicerella 

et al. [78]  

On the work done on thin (≤20nm) LaScO3, GdScO3 and DyScO3,material deposited on Si 

substrate by PLD, Zhao et al. have found that, while LaScO3 tends to crystallize at 800 ºC, 

GdScO3 and DyScO3 remains amorphous up to 1000 ºC. The same result were confirmed 

for molecular beam deposited (MBD) LaScO3 [79] and e-gun evaporated GdScO3 [53], 

however, ALD grown GdScO3 exhibited slightly lower crystallization temperature (~900 

ºC) as compared to the PLD grown one [80]. 

The electrical characteristics of LaScO3, GdScO3 and DyScO3 were studied by Zhao et al. 

[81]. They found that these materials have κ values of ~22 and they present almost no 

hysteresis and frequency dispersion in CV curves. Moreover, the observed leakage currents 

are similar to that of HfO2 for a comparable EOT. GdScO3 was also studied by Wagner et 

al, and similar results were found [53]. 

Lopes et al. [82] have investigated the electrical characteristics of MBD grown LaScO3 at 

450 ºC and found a κ value of 28. However, when they deposited the film at room temper-

ature the κ value is 17, and after applying oxygen annealing at 650 ºC the κ value increases 

to 33 [83]. They observed reduced Dit (~5x1011 (eVcm2)-1) and almost eliminated hysteresis 

after oxygen annealing. However, the oxygen annealing resulted in an increase in the IL. 

Roeckerath et al. [34] have investigated the electrical properties of e-gun evaporated 

TbScO3 on HF last Si surface. They observed a κ value of 26, small Dit, negligible hyste-

resis and leakage current. They have done the integration of GdScO3 [39] into the 

MOSFETs using SOI and sSOI substrates and TbScO3 [34] using SOI substrate. Before the 

deposition of the high-κ dielectrics, they kept the substrates in HF solution for 30 sec to 

remove the native oxide and provide a hydrogen terminated surface. High Ion/Iof ratio over 

107, steep subthreshold slope down to 66 mV/dec and mobilities comparable to that of HfO2 

were observed. 
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Chapter 3  

 

Rare-earth based high dielectric constant materi-

als 

This chapter is devoted to structural and electrical properties of the following rare earth 

based ternary oxides: LaLuO3, LaScO3, TbScO3 and SmScO3. HfO2 is used as a reference 

since it is the only high-ĸ dielectric which is now in use for CMOS technology. The films 

were deposited by MBD for LaLuO3 and LaScO3, by electron beam evaporation (e-gun) 

for TbScO3, PLD for SmScO3 and ALD for HfO2. Analysis of chemical and physical prop-

erties such as film composition, chemical bonding, chemical structure of the interface, and 

thermal stability will be discussed. Various electrical characteristics including capacitance 

vs. voltage (C-V), hysteresis, work function, interface and oxide charges of the TiN/High-

k/Si MOS capacitors will be presented. 

3.1. Sample preparation 

For the sample preparation p-type doped (100) Si with a resistivity of 1-10 Ωcm, which 

corresponds to a 1015-1016 cm-3 Boron concentration, was used as a substrate. Before film 

deposition, RCA cleaning [84] was carried out in order to clean the Si surface and form an 

approximately 1 nm chemical SiO2 on its top. Films with various thicknesses were depos-

ited as follow; 

LaLuO3: deposited by MBD by co-evaporating lanthanum and lutetium from individual 

effusion cells in an O2 background atmosphere of ~10-6 mbar and at a substrate temperature 

of 450 °C. 

LaScO3: deposited by MBD by co-evaporating La and Sc from individual effusion cells 

in an O2 background atmosphere of ~10-6 mbar and at a substrate temperature of 350 °C. 

TbScO3: deposited by e-gun from a stoichiometric ceramic target at a pressure of        

~10-6 mbar and a substrate temperature of 600 °C. 

SmScO3: deposited by PLD from a stoichiometric ceramic target in an O2 background 

atmosphere of ~10-3 mbar and at a substrate temperature of 400 °C. 
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Reference HfO2: deposited by ALD using liquid Tetrakis (EthylMethylAmido) Haf-

nium Hf[N(C2H5)CH3]4, (TEMAH) with 99.999% purity as the precursor and dry O3/O2 as 

the reactive gases in a pressure of ~0.5 mbar and at a substrate temperature of 300 °C. 

After film deposition, some of the samples undergo O2 annealing at 400 °C for 10 min 

(which will be called as post deposition annealing 1 (PDA1)). In addition, some samples, 

after O2 annealing at 400 °C for 10 min, were exposed to another annealing in forming gas 

(FG) (90% N2+10% H2) ambient at 400 °C for 10 min. O2 annealing followed by FG an-

nealing will be abbreviated as PDA2. The results obtained from those samples were com-

pared with the as-deposited samples. These samples were used for XPS and TOF-SIMS 

analyses, and electrical characterization.  

3.2. Structural characterization 

3.2.1 Composition analysis by means of Rutherford backscat-

tering spectrometry (RBS) 

Rutherford Backscattering Spectrometry (RBS) is a widely used technique in thin film 

characterization, in which a target is bombarded with highly energetic (typically 0.5-4 

MeV) helium ions (an elastic collision) and the backscattered ions provide information 

about the composition of the material under test, and depth profiling of the individual ele-

ment. Detailed information can be found in [85] 

 In a backscattering spectrum, separate peaks on a number of counts versus energy plot 

refer to the elements contained in the sample. These elements can be determined from the 

position of the peaks. The width of the peak provides information about the depth profile. 

In this work, the composition and the depth profile of the rare-earth scandates and LaLuO3 

were investigated using 1.4 MeV He+ ions at a backscattering angle of 170. Figure 3.1 (a) 

represents the RBS spectrum (measurement) together with its RUMP simulation for 

LaScO3 thin film. As expected, among the elements within the sample, since La has the 

highest mass, it appears in the higher energy part of the spectrum. On the other hand, the 

high energy edge of the La peak in the spectrum stands for the surface of the film while the 

low energy edge stands for the interface. Therefore the width of the peak provides infor-

mation about the depth. Furthermore, the concentration of the elements can be obtained 

from the height of the peaks. Using the RUMP simulation a compositional ratio of 

La:Sc:O=1:0.95:2.8, which is very close to the stoichiometric value, was determined. Sim-

ilar results were also obtained for LaLuO3 [32], TbScO3 [34] and within this work for 

SmScO3. In order to investigate the reaction after the forming gas (FG, 90 % N + 10% H) 

annealing, RBS spectra of TiN/TbScO3/Si system with and without forming gas are plotted 

in figure 3.1 (b). After the FG a small increase from 2.7 to 2.8 was observed in the ratio of 

the oxygen. Apart from that, no clear change was observed in the spectrum. This small 

change might be due to the change at the film interface. However, by using only RBS, it is 

not possible to investigate such small changes at the interface. 
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Figure 3.1: RBS spectra (a) 63 nm thick LaScO3 films on Si with a RUMP simulation, (b) 

TiN/TbScO3 on Si before and after a FG annealing.  

3.2.2 X-ray diffraction (XRD) and X-ray reflection (XRR) 

XRR is a non-destructive technique used to investigate density, thickness and surface 

roughness of thin films, and XRD provides information about the structure of the film. In 

both of them, depending on which measurement is done, the energetic X-rays can penetrate 

deep into the film and provide information about the bulk structure without causing any 

defects. For detailed information see [86]. 

An example of XRR measurements for four different film thicknesses of LaLuO3 grown 

on RCA-cleaned Si(100) surface is plotted in Fig. 3.2 (a). After the measurement, the thick-

nesses of the films were automatically determined via a computer program (X-ray data 

collector, XRDC) by fitting the XRR curve. The film thickness is proportional to the num-

ber of fringes in the XRR curves. This measurement was done for determining the thickness 

of all high-k films used to form MOS capacitors or MOSFETs. 

Because of the possibility of leakage path generation in high-ĸ dielectric application, it is 

important to keep the film amorphous during device processing. Therefore, the thermal 

stability of the film is a critical issue. The thermal stabilities of LaLuO3, LaScO3 and 

TbScO3 were already investigated by ref [32, 34, 81]. It was found that, while LaLuO3 and 

TbScO3 tend to crystallize at a temperature above 1000 C -which make these materials 

very promising for high-ĸ applications- LaScO3 tends to crystallize already at 800 C. Nev-

ertheless, this temperature is higher than what is observed for HfO2, which fully crystallizes 

at 550 C. For SmScO3, the only result about the crystallization temperature of SmScO3 is 

reported by Christen et al. [56]. They have investigated a very thick film, 370 nm, and 

found a crystallization temperature of 750 C. However, this might not be valid for thinner 

films, since the crystallization temperature tends to increase as the film thickness decreases. 

Therefore, in this work, SmScO3’s thermal stability was investigated for 22 nm thick film 

(a) (b) 
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by means of XRD. The diffraction pattern is collected by performing a θ/2θ scan. In this 

case the X-ray source is kept fixed, the sample rotates around θ and the detector moves by 

2θ while the scattered intensity I(2θ) is measured. During the measurement, the 2θ was 

varied from 10 to 80 with step size of 0.02.  

After the film deposition, rapid thermal annealing in ultrapure N2 was performed in atmos-

pheric pressure at different temperatures ranging from 700 oC to 1000 oC for 10 s. Figure 

3.2(b) shows the XRD patterns of a 22 nm thick SmScO3 film for different annealing tem-

peratures. The broad peak with low intensity at 30.75 measured for the as-deposited as 

well as the film annealed at 800 C samples indicates a fully amorphous 
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Figure 3.2: (a) XRR of LaLuO3 for different thicknesses, (b) XRD patterns of a ~22 nm 

thick SmScO3 film grown on (100) Si, as-deposited, and after annealing at different tem-

peratures in 1 atm N2 gas for 20 s. 

 

structure. Similar broad peaks were also observed by Roeckerath et al for TbScO3 and 

GdScO3 [34, 53] and by Adelmann et al for DyScO3 [87]. The origin of this peak is likely 

to be a short-range order of the atoms in the amorphous solid [86]. The arrangement of the atoms 

is not fully random and they have a self-volume whose interatomic distances between nearest 

neighbors compare to those in crystalline structures. Therefore, after the irradiation with 

monochromatic X-rays a characteristic diffraction pattern would occur. 

For films annealed at temperatures above 900 C the crystallization becomes clear since 

the sharp Bragg peaks are visible. The peaks seen in the XRD pattern for a film annealed 

at 1000 C correspond to the polycrystalline SmScO3 with an orthorhombic structure. No 

other phases were detected for the investigated annealing temperature. The value for the 

onset of crystallization is higher than that for HfO2 [88] and comparable to Hf silicates [89]. 

 

(a) (b) 
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3.2.3 Transmission electron microscope (TEM) 

In this study TEM was mainly used to check the amorphous state of the film, investigate 

the growth of the layers, and study the interfacial layer.  The broad peak with low intensity 

observed in the XRD patterns could also be mixed with the broadening caused by the over-

lap of neighboring reflections which appear due to very small crystallite size. Then the film 

would be polycrystalline. To clear up this problem one should investigate the film with an 

additional technique such as TEM. A cross-sectional TEM image of a 49 nm thick SmScO3 

film on Si (100) is shown in Fig. 3.3. It is clearly seen from the inset (also from the main 

image) that the film is amorphous and smooth. The figure also indicates the existence of an 

interfacial layer between the silicon and the high-ĸ dielectric with a thickness of 2.5 nm. 

The growth of the interfacial layer is probably related to the oxidation of the silicon surface 

during PLD growth.  

 

 

 

Figure 3.3: Cross-sectional TEM micrograph of a 49 nm thick SmScO3 film deposited 

on (100) Si. The inset shows a close-up of the interlayer, which has a thickness of about 

2.5 nm.  

 

3.2.4 Interface investigation by X-ray photoelectron spectros-

copy (XPS) 

XPS is a powerful analytical method which investigates the surface by irradiating the sam-

ple under test with highly energetic photons and analyzing the energy of the ejected elec-

trons emitted from the core levels. Detailed information about XPS could be found in [86]. 
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X-ray photoelectron spectroscopy (XPS 5600, Physical Electronics, USA) were performed 

using monochromatic AlKα radiation (13kV, 300 Watt). In order to remove any kind of 

contamination, the surface of the films was cleaned in-situ by Ar+ sputtering at energy of 

2kV for 15s before the measurement.  Core level spectra of Si2p/Si2s (5.85eV pass energy, 

0.025eV per step) were acquired. Core level spectra fitting was done using UNIFIT 2008 

after subtraction of a Shirley background and charging correction (Si±0 was shifted to 

150.7eV depending on substrate composition). Because of the interference of the Si2p core 

levels with the La4d levels, the Si2s core levels were used to investigate the interfacial layer 

at LaLuO3 /Si and LaScO3/Si, while Si2p was used for TbScO3/Si samples. 

Figure 3.4 shows the Si2s XPS spectra of 3 nm thick as grown and annealed LaLuO3 films 

deposited on an RCA cleaned Si substrate which contains a thin (~1 nm thick) chemical 

oxide. For the as deposited sample 4 peaks were observed. The first one at ~150.7 eV is for 

Si-Si from the Si substrate, the second peak at ~152.5 eV stands for silicate located at the 

interface of LaLuO3-Si. The third peak at 153.7 eV stands for an oxygen-rich SiOx and the 

last peak at 154.8 eV is related to the stoichiometric SiO2. After applying PDA2, no change 

in the position of the Si and SiO2 is observed, while the peaks related to silicate and SiOx 

were shifted by 0.3 and 0.1 eV, respectively, to lower binding energies. This indicates a 

small oxygen reduction in these layers. Moreover, based on the peaks intensity, it seems 

that the PDA triggers further reaction between LaLuO3 and Si which results in an increase 

of the silicate and SiO2 interfacial layer thicknesses. Further detailed XPS analysis on 

TiN/LaLuO3/Si gate stack has been performed very recently by Nichau et al. [90]. They 

have found that, homogenously distributed La silicate and Lu silicate at the Si interface are 

formed during oxide deposition. According to their investigation, the reaction between Si 

and LaLuO3 is strongly dependent on the annealing duration and temperature. For an an-

nealing temperature of 800 °C they observed a Si rich silicate with a major contribution of 

La(Lu) silicate, whereas for 1000 °C of annealing temperature a Si rich silicate with a major 

contribution of oxygen rich compound is observed (eg. La2Si2O7). At high temperature 

transformation of large amount of LuO to Lu silicate and its accumulation at top (with TiN) 

and bottom (with Si) interfaces is another is also among their observation. 

LaScO3 showed a slightly different behavior. While the as-deposited sample showed only 

silicate formation, after applying PDA2 a combination of both SiO2 and silicate was de-

tected. The observed binding energies for Si and different oxide layers are listed in Table 

3.1. 
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Figure 3.4: Fitted core level Si 2s spectra for as deposited and annealed 3 nm thick 

LaLuO3 films deposited on an RCA last Si surface. 

 

For TbScO3 samples, Si2p core levels were used to investigate the interfacial layer. A 4nm 

SiO2 thermally grown on Si was used for comparison. In the case of SiO2 on Si, the Si-2p 

spectra show two peaks which have a shift of 4.3 eV. However, in the case of the as-depos-

ited TbScO3 film, a shift of only 3.2 eV to higher binding energy (BE) relative to Si is 

observed. This smaller shift suggests the formation of a silicate at the interface. On the 

other hand, after applying PDA2, the peak is shifted by 3.7 eV to even higher BE, which 

suggests the existence of an oxygen-richer silicate. However no SiO2 peak was observed. 

For all oxides, it is noticed that PDA resulted in a growth of interfacial layer. 

 

Table 3.1: Binding energy and quantification of the core level compounds 

 

Si 

 

com-

pound 

LaLuO3/Si        

as grown 

 

LaLuO3/Si  

PDA2 

 

LaScO3/Si        

as grown 

 

LaScO3/Si 

PDA2 

 

TSO/Si        

as 

grown 

 

TSO/Si   

PDA2 

Si±0 

 

150.7 

 

150.7 

 

 

150.7 

 

150.7 

 

99.2 

 

99.2 

 silicate, 

(SiO3)2- 

 

152.5 

 

152.2 

 

152.4 

 

152.5 

 

102.4 

 

102.9 

 SiOx 

 

153.7 

 

153.6 153.8 

 

153.8 

 

- - 

SiO2 154.9 154.7 - 154.8 - - 

 

A similar study for LaLuO3 was also repeated by Mitrovic et al. [91] where they found 

exactly the same results.  On the other hand, Renault et al. [92] have reported for the 

HfO2/Si system, where it was mentioned that Hf contributed to form a Si-O-Hf silicate 

resulting in a peak located at lower BE relative to the SiO2 peak. Furthermore, recently, 
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Duan et al. [93] have shown that, for HfO2/SiO2/Si system, the silicate thickness strongly 

depends on the HfO2 thickness. For a thicker HfO2, after applying 600 C annealing, a 

thicker Hf silicate was observed. It seems that, silicate formation is an unavoidable reaction 

at the interface. Since silicates of high-κ materials have higher dielectric constant than SiO2, 

EOT increases less rapidly than with SiO2.   

On the other hand, some authors claim that, there is no silicate formation in HfO2/Si [94]. 

According to them, the non-stoichiometric HfO2, use the oxygen from the SiO2 to become 

stoichiometric, instead of forming a silicate. They concluded, even if there is a silicate for-

mation, that the silicate will be decomposed in the non-stoichiometric HfxO1-x to form 

HfO2. 

3.2.5 Time of flight secondary ion mass spectroscopy (TOF-

SIMS)  

TOF-SIMS is a surface analytical technique which uses a pulsed ion beam to emit ionized 

particles (secondary ions) from the surface of the sample and detect them by a mass spec-

troscope. Comprehensive information could be found in [41]. 

The TOF-SIMS depth profiling were done in negative secondary ion mode using 1 kV Cs+ 

primary ions for sputtering and 25 kV Ga+ beam for analysis. 20 nm TiN/6 nm LaLuO3/Si 

and 20 nm TiN/6 nm TbScO3/Si were chosen for TOF-SIMS analyses. For that reason the 

samples were exposed to different annealing procedures and the reactions taking place at 

the interface between the layers were studied.   

(a) Analyses of 20 nm TiN/6 nm LaLuO3/Si gate stacks 

In Fig. 3.5 the depth profiling of TiN/LaLuO3/Si system for different annealing steps is 

presented. The depth profiles of La (LaO) and Lu (LuO) are smooth and constant, which 

indicates that the grown LaLuO3 film has a homogeneous composition.  For the as grown 

film in Fig. 3.3 (a) a strong signal of SiO2 was detected at the interface. This SiO2 signal is 

likely related to ~1 nm thick SiO2 which is formed as a product of the RCA cleaning. [84]. 

In addition, a SiO2 signal appearing at the LaLuO3 surface (and which extends into the 

whole uppermost TiN layer) is also observed. This might be due to Si segregation at the 

LaLuO3 surface, having as its source Si diffusing either from the SiO2 interfacial layer or 

from the substrate. Diffusion of Si was also reported by other researchers [62]. However, 

they also could not identify the detailed mechanisms. On the other hand, the formation of 

the silicate layer which was observed by XPS is also obvious in TOF-SIMS profile. The 

two signals coming from LaSiO and LuSiO are located at the interface. Because the LaO 

and LuO signals starts to decrease before the Si peak position, it seems that the silicate 

formation occurs due to the reaction with the  Si atoms diffusing into the high-κ film, rather 

than by direct reaction with Si substrate. A complementary conclusion was presented by 

Ono and Katsumata [REF].They have investigated the interfacial reactions between rare-

earth metal oxides and silicon substrate and found that, the ionic radii for those oxides could 

be large enough for the Si to penetrate in, which indeed results in silicate formation. Similar 
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studies were also done for Dy2O3, Sc2O3, LaAlO3, Al2O3 and GdScO3 where strong Si in-

diffusion was observed [87, 95, 96, 97] .  

Figure 3.5 (b) shows result for samples with TiN on LaLuO3 with PDA1. After the O2 

annealing a shoulder of the LaO and LuO signals on the Si substrate side has appeared (see 

the arrows indicated with 1 and 2 in the plot). At the same time a similar feature was also 

observed for the peaks coming from the silicates, SiO2 and left hand shoulder of Si (see the 

arrows indicated with 3, 4 and 5 in the plot). All this indicates a new reaction between 

LaLuO3-SiO2 and the diffused Si atoms. At the bottom of the left shoulder of both SiO2 and 

Si signals (see the arrow indicated with 6 in the plot), peaks with low intensities arise, 

indicating the accumulation of Si atoms at the interface, which is used for sub-oxide for-

mation. The SiO2 and silicate peaks showed a very small extension, revealing a very small 

increase in their thicknesses as the Si concentration at LaLuO3 surface raised. This result is 

also in agreement with the report by Ono and Katsumata [98]. The increase in the interfacial 

layers thickness is directly correlated with a reduction in the density of interface trap 

charges, and an increase of the effective oxide thickness (EOT). As the device size shrinks, 

the traps become more critical since they may degrade the mobility. Therefore, it is im-

portant to keep Dit below 1011 (eVcm2)-1.  

After applying a FG anneal after PDA1, the SiO2 and silicate peaks in Fig. 3.5 (c) tends to 

show a much more homogeneous signal, and their widths remained unchanged as compared 

to PDA1 sample. On the other hand, the SiO2 and Si peaks that were at the bottom of the 

left shoulder of the SiO2 and Si signals ( arrow indicated with 6 in Fig.3.5 (b)), respectively, 

as well as the silicates intensities have significantly reduced. This is probably due to the 

migration of the Si atoms from the interface to the LaLuO3 surface. 

Figure 3.5 (d), (e) and (f) show the effect of the post metallization annealing (PMA) on the 

samples of Figs. 3.5 (a), (b) and (c) respectively. It is clearly seen that, after PMA, the SiO2 

signal has descended significantly at the interface, reaching the noise level at the LaLuO3 

surface and TiN bulk. This is due to the oxygen scavenging effect of the TiN metal. Ando 

et al. has used the oxygen-scavenging TiN metal gate in order to scale the EOT via interfa-

cial layer (IL) (scavenging at annealing temperature of 400-600 C), and to prevent the IL 

re-growth at higher temperature [62]. Accordingly, the decomposition of the IL proceeds 

via the following reaction: 

                                          
1

2
𝑆𝑖𝑂2 + 𝑉𝑂 →

1

2
𝑆𝑖 + 𝑂𝑂 ,                                              (3.1) 

where VO is the oxygen vacancy in the HfO2 (the used high-κ) and OO is the oxygen atom 

at the oxygen site of the HfO2. According to this reaction, the oxygen transport from the IL 

to TiN metal gate is provided by VO, thus, providing the oxygen scavenging. According to 

their investigation, during the scavenging of the IL, also a small amount of Si from IL has 

drifted into the bulk high-κ. As compared to the as grown sample of Fig 3.5 (a), after ap-

plying PMA, Fig 3.5 (d), the Si amount in the high-κ has increased during the oxygen drift 

from SiO2 through LaLuO3 in agreement with Ref. [62]. This actually seems to be a severe 

problem since it may reduce the effective dielectric constant of the film. 
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Figure 3.5: TOF-SIMS profiles of 20nm TiN/6 nm LaLuO3 on Si, for TiN deposited on 

a) as grown LaLuO3 film, b) O2 annealed (PDA1) LaLuO3 film, c) O2 annealed and FG 

annealed (PDA2) LaLuO3 film. (d), (e) and (f) are the results obtained for the same sam-

ples of (a), (b) and (c), which were exposed to a FG annealing after the TiN metal depo-

sition (PMA). Vertical dashed lines represent the layer boundaries at high-κ/TiN inter-

face and high-κ/Si interface. 

 

 

Interestingly, an increment in the Si concentration is not observed for the sample with 

PDA+PMA; on the contrary, it decreased. This occurs probably because there were not 

(a) 

(b) 

(c) (f) 
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(d) 



 

3.2. Structural characterization 51 

 

enough oxygen vacancies in these samples, since the previous oxygen annealing has com-

pensated most of them. Here, the LaLuO3 behaves like a barrier for oxygen out-diffusion. 

Taking a closer look to Fig 3.3 (e) and (f), one can see that, after the PMA, there is broad-

ening of the LuO and LaO signals, not only at the Si interface side (which is the indication 

of the thickening of the silicate), but also at the TiN interface side. Since the TiN signals 

remain unchanged after heat treatment (not shown) we conclude that there is no reaction 

with TiN. Therefore, the broadening cannot be explained by increase of any interfacial 

layer, but by an increase of areal density of the high-κ itself. The areal density may have 

increased due to the filled vacancies. In view of mobility, it is a good sign, since the charge 

traps caused by oxygen vacancies would be eliminated in that way.  

Concerning EOT scaling and mobility, it is suggested that the use of an ultra thin ~ 0.5 nm 

SiO2 IL is beneficial [99]. For the PMA sample, it is clearly seen that the SiO2 is not com-

pletely eliminated from the interface. However, as compared to the as-grown sample, which 

has ~1 nm of SiO2, its thickness has reduced to below 0.5 nm. On the other hand, the for-

mation of silicates instead of SiO2 is desirable since they have higher dielectric constant 

(~10). Thus, the total capacitance would increase and even lower EOT would be obtained.  

(b) Analyses of 20 nm TiN/6 nm TbScO3/Si gate stacks 

The depth profile of TiN/TbScO3 on Si for different annealing procedures reveals Tb and 

Sc elements coupled to oxygen. As in the case of LaLuO3, the signals are smooth along the 

oxide layer, as shown in Fig. 3.6. Fig. 3.6 (a) and (c), show that ScO has piled up at the Si 

interface, indicating an oversaturation of the silicate layer in terms of ScO. The profiles 

consistently reveals that, while a TbSc silicate layer is formed at the TbScO-Si interface, a 

Sc-rich silicate exists at the TbScO-TiN interface (Fig 3.6 (c) and (d)). Sc-rich silicate for-

mation at the top interface was already shown by Adelmann et al. [87] for DyScO3 on Si. 

On the other hand, on the work that has been done on TbScO3 on Si, Copel et al have also 

shown the Sc-rich silicate formation at the top surface [100]. Moreover, for an annealing 

temperature of 950 °C and above, they observed a reaction between TbScO3 layer and un-

derlying SiO2, causing decomposition to a Sc rich oxide on Tb rich silicate. However, for 

a temperature of ~500 °C the TbScO3 is stable, with no reaction taking place between it 

and the underlying SiO2.  

The as grown sample exhibits SiO2 with a very low intensity. As the film exposed to PDA2, 

more Si diffused to the interface resulting in an increase in the SiO2 intensity by a factor of 

three, indicating an increase of the SiO2 thickness. The silicate-related signals have broad-

ened. The intensity reduction in the hump on the right shoulder of the ScO and TbO signals 

suggests the formation of a Si-rich instead of Sc-rich silicate. Moreover, as the samples are 

exposed to PDA2 and PMA, Fig. 3.6 (d), the SiO2 intensity is reduced to the initial level, 

however, showing two peaks. From the positions of these peaks, it can be concluded that 

the silicate layer consist of two different compositions, and the SiO2 is incorporated into 

those layers. 
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Figure 3.6: TOF-SIMS profiles of 20nm TiN/6 nm TbScO3 on Si, for TiN deposited on 

a) as grown TbScO3, b) TbScO3 film with PDA2. (c) and (d) are the samples of graph (a) 

and (b), exposed to a FG annealing after the TiN metal deposition (PMA). Vertical 

dashed lines represent the layer boundaries at high-κ/TiN interface and high-κ/Si inter-

face. 

 

3.3 Electrical characterization 

For the electrical characterization e-gun evaporated 70 nm thick Pt or sputtered 20/30 nm 

thick TiN (by physical vapor deposition, PVD) was used as metal gates. Pt top contacts 

were realized with a shadow mask, while for patterning TiN top contacts, Al was evapo-

rated via shadow mask and used as a hard mask to protect the TiN during etching back the 

TiN from the sides by using an H2O2 solution. During the metal depositions the substrate 

were kept at room temperature in order to prevent any kind of reaction with the high-κ –

metal interface. 

To obtain an Ohmic contact on the back side of the Si substrate, a ~150 nm thick Al metal 

was deposited after removing the native SiO2 on the back side of Si in order to provide 

better electrical contact between Si and Al. Finally, a PMA was carried out in a FG ambient 

(d) 

(c) (a) 

(b) 



 

3.3 Electrical characterization 53 

 

at 400 °C to assure good backside Ohmic contact as well as improve the interface proper-

ties. Finaly, the electrical characterization of the capacitor structures was performed using 

an HP 4192A impedance analyzer for C-V measurements and a Keithley 4200 SCS 

semiconductor characterization system for leakage current measurements. 

3.3.1 Effect of PDA1 and PDA2 on C-V and I-V 

Figure 3.7 (a) compares the C–V characteristics of the films with and without PDA.  The 

curves were recorded under forward and reverse bias sweeps at a frequency of 100 kHz and 

a hold time of 3 s for each measuring point. For the sample without PDA, a capacitance 

equivalent thickness (CET) value of 1.37 nm, which yields to an equivalent oxide thickness 

(EOT) of ~1nm using CET-0.4 nm = EOT [43] was achieved when taking into account 

quantum mechanical corrections. However, a large negative flat band voltage, VFB, together 

with a large hysteresis are present in the C–V curve. According to Ref. [45] the main reason 

of the large negative VFB is the existence of oxygen vacancies.  
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Figure 3.7: (a) C-V characteristics of MOS capacitors with Al/TiN/4.5 nm LaLuO3 on 

Si. The PDA greatly reduces the hysteresis and Dit. (b) the leakage current density for 

these capacitors. At V=Vfb-1, the leakage current density has reduced 4 orders of magni-

tude after PDA.  

 

It has been reported that the oxygen vacancies give rise to the transfer of two electrons to 

the metal gate, leaving a +2 charged oxygen vacancy in the oxide layer [45]. 

                                          ⁡𝑂𝑜 → 𝑉𝑜
++ + 2𝑒 +

1

2
𝑂2.                                                (3.2) 

Thus, positive trap charges created in the the oxide layer results in a shift of VFB to a more 

negative value. On the other hand, the hysteresis loop occurs due to the oxide trap which 

are mobile. This type of oxygen vacancies represent charges. The density of interface trap 

charge, Dit, calculated by conductance technique, is higher than 1012 (eV cm2)-1. The large 

(a) (b) 
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Dit could stem from the large hysteresis. Nevertheless, for such a low EOT, it is not so easy 

to separate the interface traps from the high-κ traps. On the other hand, applying PDA1 to 

the film helps to shift the Vfb to a lower value, -0.46 V, completely eliminating the 

hysteresis, and improving Dit to a level of ~2x1011 (eVcm2)-1. This is certainly due to a 

reduced amount of oxygen vacancies and improved interface. However, the annealing 

increases EOT from 1 nm to 1.25 nm as indicated in Fig. 3.7 (a). The increment in the EOT 

is due to the thickness increase of the interfacial layer, as shown by TOF-SIMS to be 

composed of a silicate with a very thin SiO2. The sample with PDA2 shows the same C-V 

behavior as sample with PDA1. The only difference is the slightly improved Dit, which is 

1.6x1011 (eVcm2)-1. This is due to the passivating effect of the hydrogen on Si. Fig. 3.7 (b) 

shows the corresponding leakage current density after these two different treatments. It is 

clearly seen that at V = Vfb-1V, PDA results in 4orders of magnitude lower leakage current 

density, which is almost two orders of magnitude less as compared to HfO2 (10-2 A/cm2) 

with a similar EOT [67].  

Similar results were also obtained for TiN/3.5 nm LaScO3 grown on silicon as shown in 

Fig. 3.8. The obtained EOT for an as-grown sample with PMA has increased from 

EOT=0.6 nm to  EOT=1.05 nm for the sample with PDA2 and PMA due to the increase in 

the IL thicknes. The hysteresis and Dit have improved significantly after the PDA2, 

inferring that, PDA2 is important in reducing the interface trap and mobile oxide trap 

charges at the interface to Si, and in the high-κ.  The inset in Fig. 3.8 represents the 

corresponding leakage current density after these two different treatments. The leakage  
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Figure 3.8: C–V characteristics of MOS capacitors with TiN/3.5 nm LaScO3 on Si with 

and without PDA. The PDA greatly reduces the hysteresis. The inset shows the leakage 

current density for these capacitors, which is reduced by two orders of magnitude after 

PDA. 
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current at V = Vfb-1V, has been reduced by two orders of magnitude after PDA2, which is 

more than one order of magnitude smaller than measured for HfO2 (10-2 A/cm2) films with 

a similar EOT [67]. 

3.3.2 Electrical properties of the rare-earth based ternary oxides 

The C-V characteristics of TiN /TbScO3 grown on p-type silicon with PDA2 and PMA are 

presented in Fig. 3.9 (a). The TbScO3 film thicknesses range from 7 to 38 nm, as measured 

by XRR. No hysteresis was observed in the C-V curves, indicating that the high- κ films 

are free of mobile charge traps. In addition, no flat band voltage shift was observed as a 

function of film thickness, which reveals a negligible effective oxide charge within the 

films. Roeckerath et al. has already investigated TiN/TbScO3/Si MOS capacitors with 

PDA2 and PMA. However, due to different metal gate source, a flat band voltage ~ 0 V 

was observed, and as the film thickness increases, the flat band voltage shifted to more 

positive voltages. On the other hand, TbScO3 was grown on a so-called HF last surface 

(after RCA cleaning, just before the film deposition, the samples were dipped in diluted 1% 

HF in order to remove the chemical oxide and provide a SiO2 free Si surface). Thus, due to 

the direct interaction with the Si surface, a small hysteresis and a positive flat band voltage 

shift as a function of film thicknesses were observed. Therefore, as already mentioned in 

Ref. [99] having a thin SiO2 is important to improve the transport properties. So, during the 

film deposition, the oxide will react with the SiO2 instead of Si. The good quality of the 

interface is also confirmed by the very low Dit ~8x1010 (eVcm2)-1. The Dit obtained from 

conductance technique is listed in Table 3.2, for all investigated high-κ dielectrics. 
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Figure 3.9: (a) C-V characteristics of TiN/TbScO3 grown on Si with PDA2, (b) C -V 

characteristics for TiN/HfO2 grown on Si, with PDA2 and for TiN/SmScO3/Si and 

Pt/SmScO3/Si structures with 7 nm thick as grown SmScO3. All the samples were ex-

posed to a PMA after preparation. 

(a) (b) 



56 
 

Rare-earth based high dielectric constant materials 

 

  

The films with SmScO3 were not exposed to PDA2 due to the fact that, during the deposi-

tion of the film, the O2 partial pressure is equal or even higher than            10-3 mbar, which 

is three orders of magnitude higher as compared to the pressure utilized in the other tech-

niques (e.g. MBD, e-gun). This pressure is high enough for Si to react with oxygen and 

create a thicker SiO2 layer. 

Therefore, in order to prevent even thicker IL, no PDA was applied. On the other hand, 

reported results have shown that, the oxygen pressure during deposition is playing an im-

portant role [101] for the C-V characteristics. Lu et al. have investigated the electrical prop-

erties of Pt/LaAlO3/Si MOS structures. According to different deposition pressure in O2 

ambient, they observed healing in terms of hysteresis and VFB in the C-V curves as the 

pressure increased from 0.01 Pa to 0.1 Pa and finally to 1 Pa (10-2 mbar). They conclude 

that high vacuum or lower oxygen partial pressure favors the formation of oxide trap 

charges in the films and accordingly larger hysteresis due to the oxygen vacancies appear. 

The C-V characteristics of MOS structures for SmScO3 on Si with Pt and TiN gate metals 

are presented in Fig. 3.9 (b) together with the C-V curves obtained for TiN/HfO/Si for a 

3.5 nm oxide thicknesses. The results obtained from SmScO3 on Si with Pt top contact 

showed perfect C-V behavior (an example is shown only for 7 nm film thickness). It can 

be seen that the deposition pressure is enough to suppress the oxygen vacancies and provide 

a hysteresis-free and smooth C-V curve.  

 

Table 3.2: Summary of κ values, interfacial layer thickness dIL, number density of oxide 

charge (Nox), effective metal work function (Φm,eff) and density of interface trap charges 

(Dit). 

 

Material κ dIL Nox 

x1011(cm-2) 

Φm,eff 

(eV) 

Dit_Cond.  

(eVcm2)-1 

Dit_Terman  

(eVcm2)-1 

TiN/ 

LaLuO3 

32±1 0.95 -12 4.35 2x1011 4x1011 

TiN/LaScO3 29±1 0.65 -13 4.2 6x1011 6x1011 

TiN/ TbScO3 26±1 1.3 +1.2 4.5 8x1010 1x1011 

TiN/ 

SmScO3 

26±1 1.4 -2 4.65 9x1011 1x1012 

Pt/ SmScO3 28±1 2.2 +3 5 5x1011 4x1011 

TiN/HfO2 22±1 0.69 -12 4.54 4x1011 6x1011 
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On the other hand, the VFB stands ~0.1 V, which for Pt top contact and Si substrate indicates 

a negligible density of oxide charges within the oxide. However, as the top gate is replaced 

by TiN, the VFB shifts to more negative values, -0.5 V, due to the lower work function of 

TiN. The 40 mV counterclockwise hysteresis indicates the existence of positive mobile 

charges, which are supposed to be oxygen vacancies, since they are always positive 

charges. Not only the hysteresis, but also the interface to the Si is deteriorated as visible 

from the depletion zone which shows a stretch out of the C-V. The Dit~9x1011 (eVcm2)-1 is 

almost two times higher than the one obtained for samples with Pt. This is most probably 

due to the scavenging effect of the TiN metal gate; while removing the oxygen from the 

interface, it leaves behind a non-stoichiometric SiO2 IL with dangling bonds and reduced 

thickness. According to Guha and Narayanan [102], to induce scavenging, the oxygen va-

cancies in the oxide layer become mobile and reach a steady state for oxygen transport. 

This would simply explain the deterioration of the gate stack. Moreover, TiN metal gate 

provide higher Cox, consequently lower EOT due to the reduced SiO2 IL thickness. 

The C-V characteristics of TiN/HfO2/Si structures with PDA2+PMA for different film 

thicknesses are also shown in Fig. 3.9 (b) for comparison. Steep C-V curves with low 

Dit~4x1011 (eVcm2)-1 is obtained. The thinnest film (3.5 nm) provide EOT =1.4 nm. How-

ever, 100 mV of counterclockwise hysteresis indicates the presence of the positive mobile 

charges within the oxide. As the thickness of the film increases from 3.5 nm to 17.5 nm, 

the VFB shifts to more positive side. This suggests the presence of negative fixed charge 

within the oxide. Since the oxygen vacancies are always positive charges, the negative 

charges are supposed to be related to Al incorporation into the oxide, most probably during 

the patterning of TiN with H2O2 solution. During the patterning the Al hard mask is etched 

with very slow etching rate. This might allow Al to diffuse into the oxide and cause negative 

fixed charges. In agreement with this result, Bae et al., who investigated Poly-Si/HfAlO/Si 

gate stacks, observed negative fixed charge due to the Al accumulation at the HfAlO-Si 

interface [103]. A similar behavior was also investigated in REF [67]. 

The lowest EOT obtained for HfO2 is 0.34 nm higher than the one obtained for LaScO3 for 

the same thickness (3.5 nm) and 0.14 nm higher than for LaLuO3, with a 1 nm larger thick-

ness (4.5 nm). This is due to different κ values of the films, which is extracted from the 

slopes of the EOT vs Tox plots shown in Fig. 3.10 (a). The obtained κ values are listed in 

Table 3.2, which are in good agreement with previous results [32, 34, 66, 67]. The intercept 

of the slopes with the EOT axis represents the electrical thicknesses of the lower-κ interfa-

cial layer, dIL. These values are also listed in Table 3.2. The highest dIL was observed for 

PLD grown SmScO3 with Pt top contact. However, by using TiN instead of Pt, dIL reduced 

significantly by an amount of 0.8 nm. LaScO3 and HfO2 present comparable dIL, while   

~0.4 nm higher dIL exists for LaLuO3. If the dIL would be reduced for LaLuO3, an even 

lower EOT value could be achieved.  

In order to evaluate the effective work function Φm,eff of the TiN and Pt metal gates, 

WFB+ΦSi vs. EOT was plotted in Fig. 3.10 (b) for different high-κ materials, where 

WFB=qVFB and ΦSi is the work function of Si. The intercept of the slopes on WFB+ΦSi axis 

gives the Φm,eff. Extracted Φm,eff values are listed in Table 3.2. The 5 eV Φm,eff for Pt gate 

contact satisfies the work function requirement for a p-type MOSFET’s. However,  
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Figure 3.10: (a) Calculated EOT vs tox of different MOS capacitors for various rare earth 

oxides with TiN as metal gate, except SmScO3 for which Pt was used. The slope of the 

best-fit line provide the κ and its intercept on the EOT axis corresponds to the electrical 

thickness of the lower-κ IL. (b)  qVFB +ΦSi vs EOT for the same capacitors. The intercept 

of the best-fit line on the qVFB +ΦSi axis gives Φm,eff and the slope, number density of 

oxide charge, Nox. 

 

for TiN metal gate, a work function ranging from 4.2 to 4.65 eV is obtained. On the other 

hand, by varying the temperature and O2 partial pressure during post deposition annealing 

with Re, Ru and Pt gatecontact on HfO2 Cartier et al. have observed up to 750 mV VFB shift 

[45].They attributed the VFB change to the variation in oxygen vacancy concentration. Ac-

cording to Equation 3.2, a charge transfer occurs and a dipole layer would form at the top 

interface (oxide-metal gate), and change Φm,eff and VFB. Cartier et al. showed that for a Re 

gate contact and concluded that VFB can be tuned by increasing the temperature and O2 

partial pressure. It seems that the low Φm,eff observed for LaLuO3 and LaScO3 is mainly 

due to the oxygen vacancies, which appears to be the dominant intrinsic defect in the oxide 

layers.  

Another important feature extracted from the WFB+ΦSi vs. EOT plot is the number density 

of oxide charges, Nox. From the slope of the curves for different high-κ dielectrics the po-

larity and the amount of charge could be obtained. A negative slope indicates the presence 

of positive oxide charges, while positive slope indicates negative oxide charges. The results 

are listed in Table 3.2. The observed high negative charge for LaLuO3, LaScO3 and HfO2 

is based on the Al incorporation from the etching in H2O2 solution. This could be eliminated 

by using dry etching instead of wet etching, which is the case for the MOSFETs processed 

in this study. For TbScO3 a dry etching process in SF6 plasma was applied. Therefore, 

negligible oxide charge ~1011 cm-2 were observed. Interestingly, the best Dit obtained from 

conductance method was also observed for these samples, Dit~8x1010 (eVcm2)-1, indicating 

the good quality of the oxide. It is assumed that the Al incorporation to the other high-κ 

dielectrics also affect the interface, which result in slightly higher Dit. Apart from the con-

ductance method, high frequency C-V method was also employed to obtain Dit, which is 

(a) (b) 
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known as Terman’s method. In Fig. 3.11 the density of interface trap charges, Dit as func-

tion of energy in the band gap of crystalline silicon is presented. As expected, the curves 

are U shaped due to the interaction with the silicon conduction band by capturing and emit-

ting electrons. The curves reach their minima, which is the exact value of the Dit at the 

oxide-Si interface, around flat band voltages. The extracted Dit_Terman levels are added to 

the Table 3.2. Those obtained results are almost the same as the one obtained from the 

conductance method. The slight change could occur due to the extraction of the interface 

state capacitance, Cit from the measured capacitance, which consist of oxide capacitance, 

depletion layer capacitance and the interface state capacitance. On the other hand, from the 

position of the minimum for each curve, it can be concluded that, while for Pt/SmScO3 

MOS capacitors, the interface trap charges are located more in the valence band, for the 

rest, they are close to the mid gap.  
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Figure 3.11: Density of interface trap obtained from Terman’s method (high frequency 

C-V method) for different high-κ dielectrics 

 

 

Low leakage current density levels are observed for the investigated high-κ dielectrics as 

ilustrated in Fig. 3.12. For the sake of comparison, leakage currents for gate stacks 

containing SiO2, HfO2 [62], HfO2/Al2O3 [67] and GdScO3 [53]as gate dielectrics are also 

plotted. For EOT 1 nm, all the dielectrics showed comparable and low leakage current 

density. As compared to HfO2 for an EOT 1 nm, LaLuO3 samples showed 1 order of 

magnetude lower leakage current density (1.1x10-2 A/cm2) while three orders of magnitude 

lower leakage could be achieved with LaScO3. Therefore, LaLuO3 and LaScO3 seem to be 

promising in terms of further device scaling, since they provide very low leakage current 

densities. 



60 
 

Rare-earth based high dielectric constant materials 

 

  

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
10

-10
10

-9
10

-8
10

-7
10

-6
10

-5
10

-4
10

-3
10

-2
10

-1
10

0
10

1
10

2
10

3
10

4
10

5
10

6

 SiO2

 MBD LaLuO3

 MBD LaScO3

 e-gun TbScO3

 PLD SmScO3

 HfO2 

 HfO2 [62]

 HfO2/Al2O3 [67]

 e-gun GdScO3 [53]

 

 

J
 (

A
/c

m
2
) 

@
 V

F
B

- 
1
V

EOT (nm)
 

Figure 3.12: Leakage current density J vs EOT for different high-κ dielectrics investi-

gated in this work together with HfO2 and GdScO3 references. The plotted values are for 

V= VFB+1 V. 

3.4 Summary 

In the first part of this chapter the structural characteristics of the rare-earth based ternary 

oxides are described. It is found that the films are stoichiometric and amorphous up to 

800 ºC-1000 ºC. The investigation of the effect of oxygen annealing and FG annealing on 

the structural characteristics of the MOS capacitor has revealed that silicate formation is an 

inevitable process during film growth. The silicate formation is triggered by oxygen an-

nealing, while it remains unchanged after FG annealing. Another observation is that, TiN 

metal helps to reduce the SiO2 interfacial layer thickness after FG anneal by scavenging 

oxygen from the interface, which is useful in terms of EOT scaling. 

The second part is devoted to the electrical characteristics of MOS capacitors fabricated 

with LaLuO3, LaScO3, TbScO3 and SmScO3. C-V characteristics close to ideal could be 

obtained by applying PDA2+PMA to the as-grown films. The formed silicate-like interface 

seems to improve the electrical characteristics of the MOS capacitors. The extracted κ val-

ues range from 26 to 32, distinctly higher than for HfO2. Negligible hysteresis, low inter-

face trap and oxide charges, and for a comparable EOT,  at least one order of magnitude 

lower leakage current as compared to HfO2 is achieved. However, oxygen vacancies are 

found to be intrinsic dominant defects causing a reduction of the work function of TiN as 

metal gate facilitated by electron transport from the high-κ to the metal.  
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Chapter 4 
 

Integration of rare-earth based oxides into 

MOSFETs  

 

4.1 Introduction 

In chapter 3, rare earth based ternary oxides LaLuO3, LaScO3, TbScO3 and SmScO3 were 

investigated. It was shown that an annealing procedure can improve the oxide properties 

and also the interface quality of MOS structures with a lower leakage current, less interface 

trap states and compensated oxide charges. In this chapter, by using the same conditions, 

the MOSFET characteristics with the same rare-earth based oxide materials will be inves-

tigated. One of the main goals is to give a comprehensive understanding of the physical 

phenomenon in these MOSFETs, especially regarding the mobility degradation which oc-

curs typically for a high- layer compared to SiO2. Up to now, for these materials, no result 

has been published regarding the mobility degradation (the mobility obtained for TbScO3 

in [34] is the low field mobility, µo and refers to one single point, doesn’t give any infor-

mation about the voltage dependence of the mobility). Therefore, it is important to study 

the mobility degradation in order to see their possible application for advanced CMOS ap-

plications, especially compared to devices with industrial widely used high- material, 

HfO2. For the investigation of the MOSFETs with rare earth based oxides, a replacement 

gate process was developed and both n- and p- MOSFETs were fabricated on conventional 

SOI and biaxially strained sSOI substrates.  Mobility enhancement and on current gain in 

MOSFETs with LaLuO3, LaScO3 and TbScO3 are investigated and compared to HfO2 

based MOSFETs. As compared to SOI devices, a 90 percent improvement is achieved in 

mobility by using biaxially tensile strained sSOI. We also found that p-MOSFET devices 

with LaLuO3 and LaScO3 showed a very good performance with a subthreshold slope down 

to 65 mV/dec and a mobility comparable with SiO2. 
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4.2 Replacement gate process and device fabrication  

In Ref [34] and [39], we have used a non-self-aligned transistor process to prepare transis-

tors and to measure the mobility of devices with GdScO3 and TbScO3 as gate dielectric. 

Since the gate was not self-aligned to the source-drain junction, the mask was designed in 

such a way that, in all cases the gate overlaps the S/D junctions. However, this caused a 

drawback with this structure, the gate metal area was too large and therefore the overlap 

was also large, which caused a large series resistance Rsd due to the increase in Rsp and Rac 

(see Fig. 4.1) and a large overlap capacitance. Due to the non-self alignment, the metal gate 

was not symmetric on S/D part and the correction of the relatively large overlap capacitance 

for split C-V mobility extraction was not accurate. 

On the other hand, the replacement gate process is a self aligned metal gate process which 

was first demonstrated by Chatterjee et al for a gate last process [104], in order to prevent 

the metal gate from high temperature exposure during S/D dopant activation. Since it is a 

self aligned process all possible misalignment problems could be eliminated and the Rsp 

component of the Rsd in Fig. 4.1 could be neglected by providing S/D edge to gate edge 

implantation and Lsp approaching zero. In this thesis a gate last process was used, which is 

a low temperature process for the high-k materials since the gate oxide and the metal gate 

are not exposed to high temperature S/D activation process. Therefore the main aim of 

using the replacement gate process is not to protect the metal gate from high temperature 

but eliminating any possible misalignment and reducing Rsd, improving the device charac-

teristics for obtaining reliable mobility data. 

 

 
 

Figure 4.1: The S/D series resistance component: contact resistance Rc, sheet resistance 

Rsh, spreading resistance Rsp and accumulation resistance Rac. The Lc, Lsp and Lov are the 

silicon-silicate contact length, the spacer length (or non-implanted area due to misalign-

ment) and the gate-drain (source) overlap length. The gate is separated from the S/D 

contact region by the S/D extensions (SDE). 
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The device fabrication flow with replacement gate process is shown in Fig. 4.2. Lightly p-

doped SOI (100) and sSOI (100) wafers with top Si thickness of 88 nm and 70 nm, respec-

tively, were chosen as starting material and cut into 2x2 cm2 sized pieces. The thickness of 

the buried oxides (BOX) for both, SOI and sSOI is 145 nm. sSOI with a biaxial tensile 

strain of biax =0.8%, corresponding to a stress of 1.35 GPa, was used. 

1. Thinning down: 

The SOI and sSOI wafers with their thicknesses mentioned above are too thick for fully-

depleted (FD) MOSFET application. Therefore, their thicknesses were thinned down by a 

2-step oxidation and HF dipping. The SOI thickness was thinned down to 50 nm after the 

first oxidation and HF dip. 

2. Mesa Definition: 

Before the last oxidation for the final thinning down was performed, the transistors were 

electrically isolated by patterning the top Si into L/W=84/20 µm size, which is known as 

mesa isolation. The patterning was carried out using an optical lithography with AZ5214 

photoresist (PR) and RIE etching in Ar/SF6 plasma.  

3. Sacrificial gate oxide formation ( Fig. 4.2 (a)): 

After the mesa isolation an RCA cleaning was carried out to keep the surface clean before 

the sacrificial gate oxide formation which serves as a passivation between the gate-S/D 

regions. A 22/30 nm sacrificial oxide was formed in a rapid thermal oxidation furnace at 

900/950 °C in 55/60 min in oxygen ambient. The final SOI and sSOI thicknesses together 

with sacrificial gate oxide thicknesses are summarized in table 1. 

4. Sacrificial gate patterning and implantation (Fig. 4.2 (b): 

An AZ5206 PR was used as sacrificial gate. The samples were coated with this PR. After 

a hard bake of the PR a 100 nm SiO2, which will serve as a hard mask during patterning, 

was deposited on top by e-gun evaporation. The gate was defined by optical lithography 

(UV6.06 PR) and RIE etching using CHF3 and O2 plasma. CHF3 plasma etches SiO2 while 

the O2 plasma is used to etch the photoresist selectively.  

The gate definition was followed by arsenic (As+) implantation for n-MOSFETs and boron 

(B+) implantation for p-MOSFETs with an ion dose of 3x1015 cm-2. Among the n-

MOSFETs for devices with 22 nm sacrificial gate oxide an ion energy of 25 keV was used 

while for the one with 30 nm SiO2 an energy of 35 keV was used. For the p-MOSFETs a  

6 keV ion energy was applied. The implantation energy was chosen so that after the an-

nealing for activation of the dopants, the dopants spread to the entire Si layer and result in 

a carrier depleted channel which is known as fully depleted (FD) condition.  
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5. Ti hard mask deposition etching back of the sacrificial gate oxide-removal of Ti 

(Fig. 4.2 (c), (d), (e,), (f)):   

The S/D implantation was followed by a Ti metal deposition (see Fig. 4.2(c)). This would 

help even after the removal of the sacrificial gate by lift-off to keep the S/D already defined 

(see Fig. 4.2(d)). In addition this serves as a hard mask during the etching of the open area 

with the use of a CHF3 plasma in RIE. By doing so, the channel with a certain length L and 

width W will be free of the sacrificial gate oxide (see Fig. 4.2(e)). 

Finally the Ti layers were removed in a piranha solution (H2SO4/H2O2=4/1). Thus, without 

the need of a second lithography step, a self aligned gate with a SiO2 passivation layer on 

S/D could be defined (see figure 4.2(f)). 

6. Dopant activation and high-к deposition (Fig. 4.2(g)): 

Directly after the piranha cleaning for the removal of the Ti, annealing at 900 °C for 1 min 

(n-MOSFETs) and 1000 °C for 5 sec (p-MOSFET) were carried out in order to activate the 

dopants and re-crystallize the implanted S/D. This step was followed by an RCA cleaning 

to keep the Si surface clean and prevent any kind of contamination before the high-к dep-

osition. The high- materials used in this work, together with their deposition conditions 

and the film thicknesses are listed in Table 4.1. After the film deposition, all the samples, 

except for the one with SmScO3 undergo an O2 anneal at 400 °C for 10 min which was 

followed by another 10 min anneal in FG atmosphere at 400 °C in order to compensate any 

possible O2 vacancies within the film and at the interface to silicon and to reduce the inter-

face trap density. 

Table 4.1: Process parameters for different fabricated samples. tSOI/sSOI: Si/strained Si 

thickness, tSiO2: sacrificial gate oxide thickness tox: oxide thickness. 

 

 

 

 

 

 

 

 

Material tSOI/sSOI 

(nm) 

(n-MOS-

FET) 

tSOI  (nm) 

(p-MOS-

FET) 

tSiO2(nm) 

(n/p-

MOSFETs) 

Film 

dep. 

Substrate 

temp. (°C) 

tox(nm) 

(n/p-

MOSFETs 

HfO2 30/35 ---- 30/-- ALD 300 8/-- 

LaLuO3 30/35 30 30/30 MBD 450 7/8 

LaScO3 36/40 30 18/30 MBD 350 7/10 

TbScO3 36/40 ---- 18/-- e-

Gun 

600 7/-- 

SmScO3 32/-- ---- 30/-- PLD 450 8/-- 
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Figure 4.2: Replacement gate process flow for fabrication of MOSFETs 
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7. Metal gate formation and SiO2 passivation  (Fig.4.2(h),(i)): 

A 25 nm thick TiN metal gate was deposited using sputtering. The metal gate was then 

patterned using optical lithography and RIE (Fig. 4.2(h). SF6 plasma was used to etch TiN, 

which is highly selective to high-к, and the high-к layer was used as an etch stop layer. 

After that, the samples were capped by 100 nm SiO2 deposited by plasma enhanced chem-

ical vapor deposition in order to passivate the devices (Fig. 4.2(i)).  

8. Contact metallization and final FG annealing (Fig. 4.2(j)):  

 The contact windows were realized by optical lithography. With a CHF3 plasma the SiO2 

layers were etched down to the Si and TiN surface to form the contact windows. Directly 

before the 150 nm Al metal contact, first the samples were kept in a buffered HCl (5%) 

solution for 90 sec to remove the high-κ layer from S/D windows. Second, a 30 sec HFdip 

was done in order to remove any possible remaining SiO2 from the surface and provide a 

better Ohmic contact. After Al deposition, the contacts were patterned by a lift-off process. 

Finally the samples were annealed in a FG ambient for 10 min at 400 °C to provide a re-

duced contact resistivity and to improve the device characteristics.      

Fig. 4.3 shows the top view of the Si mesa after the removal of Ti metal. Along the Si mesa, 

the bright field shows the source and drain with a SiO2 layer on top, and the dark part the 

Si channel. The observed side wall roughness is due to the optical lithography and is around 

60 nm. 

 
 
 

Figure 4.3: SEM image of the MOSFET structure with (a) exposed Si channel area and 

a SiO2 layer on S/D after the removal of Ti, (b) a closer look to the surface and the side 

wall. The roughness at the side walls is due to optical lithography. 

 

Fig. 4.4 shows a cross sectional TEM image of FD MOSFET with HfO2 and LaLuO3 on 

SOI. ALD technique is well known for its conformal deposition advantage which is pro-

vided for HfO2, the side wall is nicely covered realizing perfect isolation between the gate 

2µm 500 nm 

Drain 

Si mesa 

Channel 

L 

W Channel 

Drain 

BOX 

Gate finger 

Si mesa 
Si mesa 

Source 

BOX 

(a) 
(b) 



 

4.3. Results and discussions 67 

 

and S/D and channel areas. However, MBD grown LaLuO3 doesn’t show the same charac-

teristics, which finally results in a higher leakage in the on state of the devices due to the 

fringing effect. MBD grown LaScO3, e-gun evaporated TbScO3 and PLD grown SmScO3 

showed the same non-conformal coverage at the side walls. 

 

       
 
 

Figure 4.4: Cross sectional TEM image of FD MOSFETs with (a) ALD grown 8 nm 

HfO2, (b) MBD grown 7 nm LaLuO3. A nice conformal deposition is achieved by ALD 

while MBD technique has a poor conformality.  (c) A 7 nm LaLuO3 film after O2 and 

FG anneals showed ~1 nm of interfacial layer.  

 

4.3. Results and discussions 

4.3.1 n-MOSFETs on SOI 

Fig. 4.5(a) shows typical output characteristics of an n- type fully depleted (FD) MOSFET 

with LaLuO3 gate oxide and TiN metal gate on SOI substrate at Vg ranging from 0 to 2.5 V. 

The drain current Id shows a steep linear behavior at low Vds and a good saturation at high 

Vds. According to the explanation of the Id,sat, the mobility µ, the oxide capacitance Cox and 

the series resistance Rsd strongly effect the saturation current. The graph in Fig. 4.5 (b) 

represents the output characteristics of 2 µm gate length devices with various high dielectric 

constant materials on SOI substrate together with the reference HfO2 transistor at Vg=2 V.  

Among these high-к materials, LaLuO3, LaScO3 and TbScO3 seem to show the best results. 

However, although the device with LaScO3 provides the  
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Figure 4.5: (a) Output characteristics of an n-type FD MOSFET with LaLuO3, (b) com-

parison of Id-Vds curves for rare-earth based oxide MOSFETs and the reference HfO2 

MOSFET on SOI substrates (Lg =2  µm) at Vg-Vt = 2 V.   

 

highest saturation current it suffers from high series Rsd which results in an extended linear 

region. This behavior is also visable for HfO2 and SmScO3 devices. Although LaLuO3 has 

the highest “κ” value, the device did not show the highest on current. This could be ex-

plained with the different silicate like interfacial layers (IL) observed by XPS and TOF-

SIMS measurements for different high-κ. Apart from the oxide charge within the oxide 

layer, the silicate like IL will cause scattering at the channel resulting in a lowered drain 

current. That’s why a SiO2 IL ~0.5 nm just above Si is needed to prevent the scattering. 

Unfortunately, for those investigated MOS capacitors or MOSFET devices, although the 

TOF-SIMS investigation points to a very thin SiO2, much thinner than the silicate layer, 

the exact SiO2 IL thicknesses is not known. Therefore, an investigation of the effect of the 

thickness of the IL on the mobility needed. 

Fig.4.6 shows the plot of total resistance RT versus gate length L for different gate voltage 

Vg. To extract the Rsd the RT is extrapolated to zero gate length.  The intersection of the 

fitted line on the y-axis provides the Rsd. In case of TbScO3 the obtained Rsd is 2 kΩµm and 

the results obtained for all the high-к devices are summarized in Table 4.2. The highest Rsd 

was extracted for SmScO3, which is grown by PLD. Unfortunately, PLD is not an industrial 

method for high-к deposition due to the limited layer uniformity in large scale. Moreover, 

the highly energetic pulsed laser beam might cause a degradation of the channel area which 

finally may affect the device performance. Nevertheless, the obtained Rsd’s are one and 

even two orders of magnitude higher than the required Rsd stated by the International Tech-

nology Roadmap of Semiconductors (ITRS) [5] (200 Ωµm). This huge Rsd is not modulated 

by the gate voltage and introduces a voltage drop on the S/D contacts, which finally reduces 

the drain conductance and the transconductance. At a voltage Vg-VT=2.5 V, as listed in 

Table 4.2, the Id,sat for LaScO3 is lower than the one obtained from TbScO3 based MOSFET 

due to the extracted higher Rsd. The replacement gate process shown in this thesis is not 

 

 

(b) (a) 



 

4.3. Results and discussions 69 

 

0 5 10 15 20

1

2

3

4

5

6

7

8

9

10

Rsd~2000 µm

 

 

Vgs=1    V

Vgs=1.5 V

Vgs= 2   V

Vgs= 2.5 V

R
T

 (
k


)

L (µm)

TbScO3

SOI

Rsd

 
Figure 4.6: Total resistance RT as a function of gate length L for TbScO3 gate oxide on SOI FD 

MOSFET, for a gate voltage ranging from 1 to 2.5 V. The gate width is W=20 µm.  

 

 

 

Table 4.2: Parameters extracted from output characteristics together with the к values. 

 

 

 

 

 

 

 

 

 

compatible with industrial application, but it provides a simple method for the characteri-

zation of the gate and drain currents as well as the mobility behavior of the new high-κ 

dielectrics. Since no silicided contacts were used and the distance from the channel end to 

the metal contact is 6 µm the huge portion of the Rsd is mainly caused from the spreading 

resistance. This could be greatly suppressed by using silicided contacts and reduced gate-

source and gate-drain metal contact distance. The Rsd between the contact trenches is re-

lated to the resistivity as follow; 

𝑅𝑠𝑑 =
𝜌𝑠𝑙

𝑑
⁡⁡⁡,                                                       (4.1) 

Material к Ion (µA/µm) (@Vg-Vt=2.5V) Rsd (kΩµm) NA (cm-3) 

HfO2 ~22 45 16 1.23e18 

LaLuO3 ~32 95 6.0 1.34e19 

LaScO3 ~29 106 18 2.67e18 

TbScO3 ~26 120 2.0 4.46e19 

SmScO3 ~26 37 28 1.17e18 
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where ρs is the sheet resistivity, l the distance between contact trenches and d the thickness 

of the implanted area. From the obtained Rsd one can calculate the ρs. Once the resistivity 

calculated, it is easy to get the doping concentration according to; 

𝜌𝑠 =
1

𝑞µ𝑛𝑁𝐴
⁡⁡⁡⁡⁡ ,                                                  (4.2)  

where µn is the mobility at the S/D (the mobility of the silicon) and NA the doping concen-

tration. From the extracted ρs, the corresponding doping concentrations were estimated 

from the “resistivity vs impurity concentration graph” in REF [40], which used equation 

4.2 for the calculation. The extracted results are summarized in Table 2. The obtained NA 

values range from 1.17x1018 to 4.4x1019 cm-3 One of the main reasons for this variation 

could be the thickness variation of the SiO2 passivation layer. A second reason could be an 

incomplete activation of the carriers.  

Typical transfer and gate leakage characteristics of a FD SOI MOSFET with LaLuO3 gate 

oxide for a drain voltage ranging from 0.1 to 1.1 V are shown in Fig. 4.7 (a). The devices 

show an almost ideal subthreshold slope of 72 mV/dec. At low Vds a high Ion/Ioff ratio up to 

109 and an off state current Ioff down to 10-8 µA/µm were achieved. However as Vds in-

creases Ioff also increases. As Vds exceeds 0.9 V, the Ioff exceeds the gate leakage by an 

order of magnitude. This behavior in the off state can be explained by the gate induced 

drain leakage (GIDL) which limits achieving low Ioff with an increased Vds due to the high 

electric field which occurred at the extended gate to S/D overlap region. Similar GIDL 

behavior was also observed for the other high-к devices, however due to the conformal 

deposition provided by atomic layer deposition, HfO2 showed lower degradation in the off 

state for increased Vds. On the other hand, due to the non-conformal deposition the leakage 

currents at on state for all the devices with rare-earth based scandates are three orders of 

magnitude higher than the devices with HfO2. Fig. 4.7 (c) and (d) represent the statistical 

distribution of the threshold voltage VT for FD MOSFETs with LaLuO3 and LaScO3 gate 

oxides. <VT> represents the average threshold voltage and  is the standard deviation. In 

Table 4.3 the Ion/Ioff ratio obtained for Vds=0.3 V and the extracted average VT for devices 

with different high-к are summarized. A VT of ±0.2 V is always desired for n/p MOSFETs 

in order to achieve a reasonable gate overdrive for the desired device performance. Due to 

the low work function obtained for the TiN metal gate, which is caused by the presence of 

oxygen vacancies or the non optimized deposition condition of the TiN, the obtained VT 

are in an acceptable range. Fig. 4.7 (b) shows the subthreshold characteristics of RE-based 

oxides. For a direct comparison of the subthreshold slope a VT correction was applied. 

Among these materials LaLuO3 and LaScO3 show the steepest subthreshold characteristics. 

The high subthreshold slope observed for HfO2 and SmScO3 implies that whether the films 

are too thick or the trap density located at the interface is relatively higher compared to the 

other oxides.  
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Figure 4.7: Transfer characteristics of n-type FD MOSFET with (a) LaLuO3 at Vds from 

0.1 to 1.1 V. The gate leakage currents Ig are also presented in the figure. (b) Comparison 

of subthreshold characteristics of devices with various high-k dielectrics. Steep sub-

threshold slopes were obtained for LaLuO3 and LaScO3 devices. (c) and (d)  statistical 

distribution of threshold voltage  for MOSFETs with LaLuO3 and LaScO3 gate oxides. 

 

Table 4.3: Parameters extracted from transfer characteristics and split C-V measure-

ments. 

 

Material Ion/Ioff 

(@Vds=0.3V) 

<VT > 

(V) 

S 

(mV/dec) 

EOT 

(nm) 

Dit x1011 (eVcm2)-1 

HfO2 108 0.24 104 3.0 ~20 

LaLuO3 109 0.13 72 1.7 2-5 

LaScO3 109 0.22 72 2.3 2-4 

TbScO3 108 0.1 79 2.7 2-6 

SmScO3 106 0.05 139 3.0 ~50 

(a) 
(b) 

(c) (d) 
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The inverse subthreshold slopes show a uniform distribution over the gate length as shown 

in Fig. 4.8 (a) for MOSFETs with LaLuO3. The same behavior was also observed for the 

rare-earth scandates and HfO2. This is a clear indication of the homogeneity of the interface 

to silicon and the uniformly grown oxide layer. In Fig. 4.8 (b) the transconductance, Gm of 

the devices is plotted for a Vds=0.65 V by taking the derivative of the drain current over 

gate voltage. Before taking the derivative of the drain current Rsd was corrected in order to 

remove the effect of the Rsd to allow a direct comparison. As compared to HfO2 devices, 

LaScO3 devices show an improvement of a factor of two, while for LaLuO3, TbScO3 and 

SmScO3 factors of 1.62, 1.58 and 1.14 of improvement in transconductance, respectively, 

were obtained. Because of their higher dielectric constant, the rare earth based oxides pro-

vide much higher drain currents as compared to HfO2, and even for further scaling much 

better performance would be achieved. Although SmScO3 has a к value of 26, current gain 

compared to HfO2 is not that high as compared to the other scandates, which might be due 

to the damage of the channel of the highly energetic pulsed laser deposition. For all devices 

the observed degradation in transconductance for high gate voltage is due to the reduced 

mobility at high electric fields.   

 

The gate capacitance, Cg, obtained from the split capacitance-voltage (C-V) measurement 

of different gate length for FD MOSFETs with LaScO3 is plotted in Fig. 4.9 (a). The meas-

ured capacitance includes the overlap parasitic capacitance, Cov, from the gate to S/D ex-

tension. To eliminate the Cov and extract the exact capacitance of the gate to channel, Cgc,corr 

the correction which is mentioned in section 2.4.2 is applied. In Fig. 4.9 (b) the corrected 

gate to channel capacitance Cgc,corr is plotted. The same depletion and almost the same in-

version region imply a uniform oxide layer over the sample surface which finally results in 

an accurate mobility extraction. The maximum capacitance in inversion, Cox, gave an  
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Figure 4.8: (a) Subthreshold slopes extracted from different gate length devices, (b) the 

transconductance extracted from differentiating Id over Vg. The Id current is corrected for 

the series resistance. 
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equivalent oxide thickness EOT of ~2.3 nm. Knowing the Cox and subthreshold slope helps 

to extract the density of interface states Dit by using Equation 2.42. In table 4.3 the obtained 

EOT and Dit values are listed for different gate oxides. The extracted Dit values for LaLuO3 

and LaScO3 based MOSFETs are in agreement with the results obtained from their MOS 

capacitor counterparts as reported in chapter 3, while HfO2 devices show an order of mag-

nitude deterioration as compared to the MOS capacitor with HfO2. Bae et al. [105] have 

shown that, as the thickness of TiN increases, the stress on the film also increases, resulting 

in a higher Dit. On the other hand, according to Reimbold et al. [106] a TiN film behaves 

as a nitrogen reservoir. Nitrogen diffuses through the high-к layer, and results in a deterio-

rated interface, therefore, as the TiN thickness increases Dit also increases. However both 

of these claims cannot explain the higher Dit obtained for MOSFETs with HfO2 since for 

both MOS capacitors and MOSFETs the TiN has the same thickness. The same problem is 

also observed for the TbScO3 and SmScO3 MOSFET system. While 2 times of degradation 

in Dit is observed for TbScO3 MOSFET system, this factor increases to 5 times for SmScO3 

system. This is most probably process related damage, since in MOS structures, a planar Si 

substrate has been used, however for the transistor, a mesa isolated Si layer with thermally 

grown SiO2 passivated S/D and sidewalls were used. The Dit most probably increased due 

to the stress induced defects caused by the TiN and sidewall passivation at the edges of the 

channel. 

Fig. 4.10 shows the effective electron mobility derived from split C-V measurements for 

HfO2 devices and different rare-earth based oxide MOSFETs. For an accurate mobility ex-

traction capacitance and Rsd correction were carried out as explained in section 2.4.2. The 

obtained mobilities of all high-κ dielectrics are lower than the universal SiO2 mobility 

curve.  
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Figure 4.9: (a) split CV capacitance; Cgc of FD MOSFET with 7 nm LaScO3 on SOI, (b) 

corrected Cgc yields EOT of 2.3 nm. 
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Figure 4.10: Effective electron mobility versus the effective field in FD MOSFETs with 

HfO2 and rare earth based oxides. The universal Si mobility and mobilities extracted 

from MOSFETs with 3 nm HfO2 are plotted as a comparison.  

 

Although with the recent technologically improved devices and processes, the obtained 

mobility of devices with high-κ dielectrics is still lower than the universal SiO2 mobility. 

The degradation of the channel mobility with high-κ dielectrics is mainly attributed to three 

scattering mechanisms. The first is remote Coulomb scattering (RCS), which occurs due to 

remote electrostatic interaction caused by charged species into the gate dielectric and at the 

interfaces to metal gate and the Si substrate. This kind of interactions modifies the electro-

static potential seen by electrons traveling in the conduction channel. Among the investi-

gated MOS structures in Chapter 3, positive and negative oxide charges were observed. 

However, as already mentioned, the high portion of the observed negative charges is at-

tributed to the wet etched Al metal, which is not the case for the MOSFETs. For TbScO3, 

for example, Nox ~1x1011 cm-2 and the scattering is relatively small, but is not negligible. It 

is worth indicating that, the observed oxygen vacancies, discussed in Chapter 3, while not 

causing scattering, they may trigger the transient carrier exchange between the channel and 

gate dielectric and result in a mobility reduction during a quasi-static measurement [107]. 

On the other hand, the observed Si diffusion towards the high-κ detected by the TOF-SIMS, 

could be another possible reason for RCS, if they are charged. Also, one should not under-

look the Coulomb scattering due to the interface trap charge. Higher Dit was observed for 

SmScO3 and HfO2 which showed 1.5 times lower electron mobility as compared to the 

other oxides. Moreover, the Dit in SiO2 MOSFETs is in the range of 1010 (eVcm2)-1, which 

is almost one order of magnitude lower than for MOSFETs with LaLuO3, LaScO3 and 

TbScO3. The second scattering mechanism is surface roughness scattering which occurs at 

high applied electric field, and is mainly due to the deposition conditions and processing 

issues. This type of scattering decreases the mobility strongly at high electric field which 
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is obvious in Fig. 4.10. The third scattering mechanism is the high-κ related surface soft 

optical (SO) phonon scattering. Fischetti et al. have already shown that the large dielectric 

constant of the high-κ materials originates from their strong ionic response which results in 

low-energy polar-optical phonons within the material [35]. Electrons at the Si channel will 

scatter from SO phonons via a Fröhlich interaction which has unscreened scattering field 

amplitude 𝛷𝜔𝑠𝑜 at the dielectric interface proportional to 

𝛷𝜔𝑠𝑜~ћ𝜔𝑆𝑂 [
1

𝜀𝑆𝑖
∞+𝜀𝑜𝑥

∞ −
1

𝜀𝑆𝑖
∞+𝜀𝑜𝑥

0 ],                                              (4.3) 

where ћ is the reduced Planck constant, ωSO is the frequency of the SO insulator phonon, 

𝜀𝑆𝑖
∞ is the optical permittivity of Si and 𝜀𝑜𝑥

∞  and 𝜀𝑜𝑥
0  are the optical and the static permittiv-

ities of the dielectric, respectively. For the high-κ dielectrics, an ionic bonding exists, there-

fore, there is a large difference between the 𝜀𝑜𝑥
∞  and⁡𝜀𝑜𝑥

0 . The first term in the square bracket 

represents the inverse of the electronic response of the dielectric, which is almost equal for 

all the dielectric materials. Since ions cannot fully respond at sufficiently high frequency, 

their optical permittivity (high frequency permittivity) is low and close to the SiO2 one. 

The second term denotes the inverse of the ionic response. The ionic response is dominant 

at low frequencies and results in both, the high dielectric constant, (κ= 𝜀𝑜𝑥
0 /εvac, where εvac 

is the permittivity of the vacuum) and high scattering contribution due to ionic polarization. 

Simply, the higher the ionic response, the higher the dielectric constant and scattering con-

tribution become. On the other hand, ћ𝜔𝑆𝑂 (the phonon energy) increased with decreased 

“κ” value. In case of SiO2 gate oxide, a covalent band exists, therefore the ionic response 

is small, that’s why its “κ” value is small. Moreover, the Si-O bonds are quiet stiff, hence, 

they have a large⁡ћ𝜔𝑆𝑂, however, the electron in inversion layer cannot interact with too 

large energy. Therefore, for SiO2 the SO phonon scattering does not really affect the elec-

tron mobility. In contrast, for high-κ material, the carrier electron in the conductive channel 

undergoes more collisions with the low energy optical phonon and the mobility degrades. 

It can be concluded that, for high-κ systems, even under ideal conditions, due to the high-

κ inherited SO phonon scattering, a reduced mobility will always be observed. Due to this 

fact, a very thin SiO2 IL is suggested between the high-κ and Si in order to reduce the 

scattering effect and improve the mobility [99]. 

For TiN/HfO2 gate system, Sim et al. [108], showed that the mobility strongly depends on 

the thickness of the HfO2. According to their assumption, increasing the film thickness 

results in an increase in oxide charges and dipoles which trigger RCS and SO phonon scat-

tering. To point out their observation, a mobility curve for TiN/3 nm HfO2/SOI system with 

an EOT of 1.4 nm is also plotted in Fig. 4.10 [109] which shows a 1.2x improvement as 

compared to our results with LaLuO3, LaScO3 and TbScO3 and 1.8x improvement over the 

HfO2 mobility measured in this work for an EOT of 3 nm. Surprisingly, although LaLuO3, 

LaScO3 and TbScO3 have different dielectric permittivities, and in this experiment different 

EOT values, they show the same electron mobilities. According to XPS and TOF-SIMS 

measurements, the same mobility could be explained by the observed silicate like interfa-

cial layer for those materials. 
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For the sake of further confirmation of the extracted split C-V mobilities, the effective elec-

tron mobility was also determined from the direct parameter extraction using Id(Vg) char-

acteristics in strong inversion by applying the 𝐼𝑑/√𝑔𝑚(𝑉𝑔) method as explained in section 

2.4.2. The plot of 1/A as a function of gate length L is presented in Fig. 4.11(a). With the 

help of a linear fit, the low field mobility µo is extracted. In this way the effects of mobility 

reduction with gate voltage and Rsd are avoided.  For comparable thicknesses, a mobility 

reduction trend was observed for a decreased EOT in µo. For LaLuO3 MOSFET system, a 

1.15x improvement in the µo over LaScO3 sample was observed, while MOSFETs with 

LaScO3 proved a 1.14 times of improvement over HfO2 sample. This trend demonstrates 

the benefit of LaLuO3 and LaScO3 in terms of mobility. In order to calculate the effective 

electron mobility from the extracted µo, first the mobility reduction coefficient θ is calcu-

lated from the Id(Vg) curve after correcting Rsd. The obtained results are 1.01 V-1, 0.8 V-1, 

and 0.43V-1 for HfO2, LaLuO3 and LaScO3 MOSFETs, respectively. The extracted effec-

tive electron mobilities from Id(Vg) are illustrated in fig. 4.11 (b) (solid lines). The intercept 

on the mobility axes is the low field mobility, µo. For comparison, the split C-V mobilities 

are also added to the graph (solid squares). It is clear from this figure that a very good 

agreement is achieved between the two approaches. In both cases, the mobility degrades 

with the applied voltage, due to the further activated scattering mechanisms. 
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Figure 4.11: (a) Plot of the 1/A vs. the gate length L to extract the low field mobility 

parameter µo in the transistors with HfO2, LaLuO3 and LaScO3 on SOI substrate. (b) 

Comparison of the effective electron mobilities obtained from split C-V (solid squares) 

and static Id(Vg) curves (solid lines).   

 

4.3.2 n-MOSFETs on sSOI 

Fig. 4.12 represents the measured output characteristics of MOSFETs with LaLuO3 and 

TbScO3 gate oxides on SOI and sSOI substrates at gate voltage ranging from 0 to 2.5 V.  

Devices with LaLuO3 on sSOI substrate showed almost 80% enhancements of saturation 

(b) (a) 
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currents as compared to SOI devices, which is an expected improvement with sSOI sub-

strate. TbScO3 devices on sSOI showed an enhancement factor over their SOI control de-

vice of ~20%. The large series resistance Rsd limited the drain current from reaching the 

saturation at Vg=2.5 V. TbScO3 devices on sSOI have lower Rsd as compared to LaLuO3 

devices on sSOI. Therefore the enhancement factor over their SOI control remains almost 

the same, ~20%, for every applied gate voltage. The obtained drain current enhancement 

factor over SOI, the extracted Rsd and the doping concentration are summarized in Table 

4.4. As also observed for SOI devices, sSOI devices with LaLuO3, LaScO3 and TbScO3 

showed over 50% of improvement in maximum achievable drain current as compared to 

HfO2 reference devices. On the other hand, the Rsd still seems not to show a consistent 

variation among the high-к and even among SOI and sSOI, which is the result of the contact 

resistance and implantation through thick SiO2 layers. 
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Figure 4.12: The output characteristics of FD MOSFET’s with (a) LaLuO3, (b) TbScO3 

gate oxides on SOI and sSOI substrates. L/W= 2/20 µm.  

 

Table 4.4: sSOI drain current enhancement over SOI and the extracted Rsd. 

Fig. 4.13 shows the transfer characteristics of FD MOSFETs with LaScO3 and TbScO3 gate 

oxides on SOI and sSOI substrates at drain voltages ranging from 50 to 650 mV. For all of 

the devices no remarkable change was observed in the subthreshold slope(see Fig. 4.14 (a)) 

and off-currents.  GIDL still remains a limiting issue for the off current. Obtaining the same 

subthreshold slope for sSOI as compared to their SOI control devices implies good oxide 

properties. The improvement in the on current is an expected consequence of the sSOI 

substrate. On the other hand, as already been observed by Lim et al. [110], due to the strain 

Material Id Enhancement over SOI (%) Rsd (kΩµm) Nd (cm-3) 

HfO2 70 7.8 8.89e18 

LaLuO3 80 13.8 3.92e18 

LaScO3 40 3.0 2.27e19 

TbScO3 20 7.6 7.90e18 

 

(b) (a) 
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induced band gap-narrowing, the change of the electron affinity and stress induced changes 

in the density-of-states a threshold voltage shift ∆VT  was observed in sSOI devices  com-

pared to their SOI control transistors. The statistical distribution of the VT for FD 

MOSFETs with LaLuO3 on sSOI substrate is plotted in Fig. 4.14 (b) and the obtained ∆VT 

shifts are summarized in Table 4.5. The ∆VT variation from one high- to another stems 

from both, the different reaction of each high-к with TiN and different interface to SOI and 

sSOI substrates. However, no VT shift for TbScO3 devices remains unclear. One possible 

reason could be that the TiN induced tensile stress on the film. According to Choi et al. 

[111] as the tensile stress induced by the metal increases, the work function of the metal 

decreases. As a result devices with TbScO3 on SOI substrate might show a lower threshold 

voltage, which finally became the same as the one of sSOI devices. 
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Figure 4.13: Transfer characteristics of FD MOSFETs with (a) LaScO3 and (b) 

TbScO3 gate oxides on SOI and sSOI substrates. 
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Figure 4.14: (a) Subthreshold slope variation over gate length, Lg on SOI and sSOI sub-

strates, (b) statistical distribution of the threshold voltage on for FD MOSFETs with 

LaLuO3 on sSOI substrates. 

Table 4.5: sSOI drain saturation current enhancement over SOI and the extracted Rsd. 

(a) (b) 

(a) (b) 
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Material ∆VT (mV) Rsd (kΩµm) EOT (nm) 

HfO2 ~-200 7.8 ------------ 

LaLuO3 ~-180 13.8 1.7 

LaScO3 ~-210 3.0 2.3 

TbScO3 ~0 7.6 3.0 

 

 

The transconductance enhancement with the sSOI substrate for a drain voltage of 650 mV 

is plotted in Fig. 4.15 as a function of gate length. A significant improvement was observed 

with the strained silicon devices. Since Rsd did not vary too much for devices with TbScO3 

on SOI and sSOI, the enhancement factor remains the same as observed from the output 

characteristic. However, for LaLuO3 and LaScO3 the enhancement is slightly higher than 

that extracted from their output characteristics due to the change in Rsd. 
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Figure 4.15: Transconductance enhancement with sSOI substrate over SOI. The lowest enhance-

ment of ~20% was observed for TbScO3 devices. 

The split C-V measurements on sSOI devices yielded similar EOT for LaLuO3 and LaScO3. 

However a slight increase was observed for TbScO3 most probably due to the oxide growth 

and oxide reactions on different substrates. This could explain the observed ∆VT =0 and 

lower transconductance enhancement over their SOI control for these devices. The obtained 

EOT values are included to table 4.5. An example for the corrected split C-V is plotted in 

fig. 4.16(a).  Due to similar subthreshold slopes S and Cox, no change was observed on the 

extracted Dit as compared to the SOI ones. The extracted split C-V electron mobilities are 
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plotted in Fig. 4.16(b). For the whole electric field range, LaLuO3, LaScO3 and TbScO3 

provide the same electron mobility, similar to the SOI devices shown in Fig.4.10. These 

dielectrics on SOI substrate provide an electron mobility of 179 cm2/Vs at an effective field 

of 0.24 MV/cm2 (Fig. 4.10). A 90% improvement is achieved by using biaxial tensile 

strained sSOI with a stress of 1.35 GPa. Such an enhancement with sSOI was also observed 

by Andrieu et al. [112] and Barral et al. [38]. However, the obtained mobilities at high 

electric field are lower than what they extracted as shown in the Fig. 4.16(b) and only match 

with universal SiO2 mobilities at high electric field due to SO phonon scattering and RCS. 

Unfortunately, the deposition conditions and the right metal gate also play an important 

role in mobility degradation due to different oxide and interface trap charges which may 

cause stronger SO phonon scattering and RCS.  
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Figure 4.16: (a) Corrected split Capacitance-Voltage curve for devices with LaScO3 on 

sSOI substrate, (b) electron mobility for different rare-earth based oxides and the refer-

ence SiO2 universal, SiO2 on sSOI [113] and HfO2 on (001) sSOI substrate. 

 

4.3.3 p-MOSFETs on SOI 

 p-MOSFETs were also fabricated with  LaLuO3 and LaScO3. Typical output characteris-

tics of p-MOSFETs are plotted in Fig. 4.17 (a) and (b), at Vg-Vt from 0 to 2.5 V. Both type 

of devices show good on currents, however, there is a slight distortion in the linear part 

which is extended by the large series resistance. The series resistance Rsd derived from 

output characteristics is plotted in Fig. 4.17(b) and (c) which are as high as the one observed 

for the n-MOSFETs. 

The transfer characteristics and gate leakage of FD p-MOSFETs are shown in Fig. 4.18. 

Due to the thicker films at least two orders of magnitude lower leakage current is achieved 

and the gate leakage is not affected by GIDL in the off-state. Both devices show very low 

off-currents and high Ion/Ioff ratios of 1010 for LaLuO3 device and 1011 for LaScO3 

MOSFET, respectively. Similar to n-FETs, the GIDL limits the off currents as Vds in-

creases. The devices showed an almost ideal subthreshold slope S, reaching 65 mV/dec, 

(a) (b) 
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and the slope does not show a strong variation over gate length as shown in Fig. 4.19(a) 

which refers to a slight change in interface charge traps. On the other hand, the change in 

interface charge could also be screened by the variation of the threshold voltage, VT. As 

the subthreshold slope decreased, the threshold voltage also decreased as shown in Fig. 

4.18 (b). 
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Figure 4.17: Output characteristics of FD p-MOSFETs with (a) LaLuO3 and (b) LaScO3 

on SOI (L=2 µm). (c) and (d) the total resistance RT as a function of gate length L for the 

investigated oxides for gate voltage ranging from -2 to -3 V. The gate width is             

W=20 µm. 
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Figure 4.18: Transfer and gate leakage characteristics of FD p-MOSFETs with LaLuO3 

and LaScO3 on SOI substrate. 

 

The main reason for VT change is actually the total depletion charge QD. The interface 

charges are in parallel to the depletion charge, and any change in their amount easily affects 

the total QD. Therefore, depending on their variation the VT can increase or decrease. In 

Fig. 4.19 (b) the decrement in subthreshold slope and threshold voltage refers to the less 

charged interface traps which are already observed by Zhao et al. [114] and Chiang et al. 

[115]. The statistical distributions of VT for these devices are shown in Fig. 4.19 (c) and (d) 

where an average VT of -0.73 V for LaLuO3 and -0.79 V for LaScO3 was obtained. These 

obtained results are not symmetric to the n-MOSFETs with the same gate dielectrics which 

is due to below midgap work function of ~ 4.3eV for TiN. 

The split capacitance-voltage measurement of p-MOSFETs with LaLuO3 and LaScO3 

shown in Fig. 4.20 yielded EOT values of 2.3 nm and 2.8 nm, respectively. The obtained 

mobility from the split C-V is shown in Fig. 4.21 with reference HfO2 [38], HfSiON [116] 

and the universal Si mobility. Devices with LaLuO3 and LaScO3 showed almost the same 

hole mobility, similar to electron mobility in n-FETs. Their mobilities are comparable to 

that of HfSiON, and are higher than the ones with HfO2. Although, the hole mobilities in 

high-κ devices remain still below the universal curve, the degradation is not as severe as 

for the electron mobility. One should note that, the effective hole mobility is always lower 

than the effective electron mobility due to larger effective mass of hole and the scattering 

probability of the heavy holes in a high-κ based p-MOSFET channel due to the OP phonon 

scattering or RCS is lower as compared to light electrons in a high-κ based n-MOSFET. 
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Figure 4.19: Subthreshold slope variation over (a) gate length, L, (b) threshold voltage 

VT and statistical distribution of threshold voltage in (c) and (d) for FD p-MOSFETs with 

LaLuO3 and LaScO3 gate oxides. 
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Figure 4.20: Split capacitance-voltage measurement of FD p-MOSFETs with LaLuO3 

and LaScO3 for different gate length. 
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Figure 4.21: Hole mobility of devices with LaLuO3 and LaScO3 gate oxides. HfSiON, 

HfO2 and universal mobilities are also plotted for comparison. 

 

4.3.4 Gate induced drain leakage (GIDL) 

In accumulation the transistor is in the off-state. When the drain of an n-MOSFET is biased 

at a positive voltage Vd and the gate is biased with a negative Vg an electric field is created 

and thus a deep depletion region is formed at the surface of the overlap region between the 

gate and drain as shown in Fig. 4.22 (a). Gate induced drain leakage (GIDL) is caused by 

band to band tunneling in the deep depletion region when the band bending is larger than 

the Si band gap. The band bending exceeds the band gap, electrons in the valence band 

tunnel to the conduction band giving rise to band to band tunneling (BTBT). Those elec-

trons are swept to the drain due to the lateral electric field giving rise to drain current [117, 

118, 119]. In addition, trap assisted tunneling by traps located at an energy level of Et [120, 

121] can also enhance BTBT resulting in larger GIDL. Fig. 4.22(b) shows the trap assisted 

BTBT, where electrons in the valence band and at the interface tunnel to the conduction 

band. GIDL can be estimated by the following equation [122] 

𝐼𝐺𝐼𝐷𝐿 = 𝐴 ∙ 𝜉𝑠 ∙ 𝑒𝑥 𝑝 (−
𝐵

𝜉𝑠
)⁡⁡⁡⁡⁡,                                     (4.4)                                 

where A is a pre-exponential coefficient, B a constant depending on the barrier height and 

ξs the electric field at the gate to drain overlap region and defined as [118] 

𝜉𝑠 =
є𝑆𝑖𝑂2

є𝑠𝑖
∙ (⁡

𝑉𝐷𝐺−𝜓𝑠

𝑇𝑜𝑥
)⁡⁡,                                           (4.5) 
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Figure 4.22: (a) Schematic current flow under GIDL bias, (b) band diagram of the gate 

to S/D overlap region.  

 

where єSiO2 and єsi denote the dielectric constant of SiO2 and Si, respectively, Tox the equiv-

alent oxide thickness of the gate dielectric, VDG the potential difference between drain and 

gate biases and ψs is the surface potential and is given by [122] 

𝜓𝑠 = 𝑉𝐷𝐺 +
𝑇𝑜𝑥
2

є𝑆𝑖𝑂2
2 𝑞 ∙ 𝑁𝐷 ∙ є𝑆𝑖 −√(𝑉𝐷𝐺 +

𝑇𝑜𝑥
2

є𝑆𝑖𝑂2
2 𝑞 ∙ 𝑁𝐷 ∙ є𝑆𝑖)2 − 𝑉𝐷𝐺

2 ⁡⁡⁡⁡⁡⁡⁡⁡⁡,         (4.6) 

where ND is the doping concentration. The electric field strongly depends on VDG. Accord-

ing to Chen et al [1987], since the band gap of Si is Eg=1.12 eV a ψs=1.2 eV (which is the 

band bending) is enough to cause BTBT. Therefore ψs is chosen to be a constant number 

equal to 1.2 eV. For the case of indirect tunneling B can be expressed by [122] 

𝐵 =
4∙(2𝑚𝑟)

1
2∙𝐸𝑔

3
2

3𝑞ħ
⁡⁡⁡⁡⁡⁡⁡⁡⁡ ,                                                 (4.7) 

where, mr is the reduced effective mass of electron, equal to 0.2 times the free electron mass 

for trap free samples or direct BTBT and Eg denotes the energy gap of silicon. This results 

in B=36 MV/cm [120]. However, if tunneling is mainly assisted by interface traps located 

at an energy level Et relative to the valence band edge, B ranges between 10 to 29 MV/cm 

and Eg should be replaced by Eg-Et, as an effective barrier height for electron tunneling 
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[120]. After measuring the GIDL current, which is the output current under GIDL bias 

(negative Vg step for n-MOSFETs, and positive Vg steps for p-MOSFETs) the coefficient 

B could be extracted from the slope of the linear portion of the ln(IGIDL/(Vdg-1.2)) vs. 

(1/(Vdg-1.2)) plot as [120] 

𝑠𝑙𝑜𝑝𝑒 =
є𝑆𝑖

є𝑠𝑖𝑂2
∙ 𝐵 ∙ 𝑇𝑂𝑋 .                                                  (4.8) 

After obtaining the B parameter, one can extract the final barrier height and the energetic 

position of the interface trap states. 

Fig. 4.23 shows the GIDL current under GIDL bias ranging from -1 to -2 V. GIDL can only 

occur at high electric field. The larger the electric field the higher the tunneling can occur, 

as also can be seen in the figure. Due to the non-conformal deposition and process related 

non uniformities, devices with LaLuO3 and LaScO3 on sSOI showed low GIDL current 

compared to their SOI control samples, however, the opposite behavior was observed for 

devices with TbScO3. 

 

 

 

Fig. 4.24 shows ln(IGIDL/(Vdg-1.2)) vs. (1/(Vdg-1.2)) for the extraction of the B parameter 

for high-κ on different substrates. The extracted B parameters using equation (4.8) are listed 

in Table 4.6. These calculated values indicate that the main reason for GIDL is trap assisted 

band-to-band tunneling. Et values are extracted from the B parameter taking into account    

Eg = 1.12 eV for SOI and 1.0 eV for sSOI, as calculated in Ref. [123], 
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Figure 4.23: GIDL current for n-MOSFETs with LaLuO3 and TbScO3 gate oxides on 

SOI and sSOI substrates under GIDL bias Vg. 
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Figure 4.24: ln(Id/(VDG-1.2)) vs 1/(VDG-1.2) for the extraction of B parameter. 

 

 

Table 4.6: The extracted B parameters and Et positions for FD MOSFETs with LaLuO3, 

TbScO3 and LaScO3 

 
 

Material B (MV/cm) (SOI/sSOI) Et (eV) (SOI/sSOI) 

LaLuO3 13/17 0.55/0.31 

TbScO3 12/16 0.58/0.35 

LaScO3 11/10 0.6/0.51 

 

and listed in Table 4.6. Obviously, in all SOI devices the interface states are located around 

midgap, and due to the strained silicon, their position is shifted more to the valance band 

edge. The obtained Et values for SOI devices are supporting the values obtained from high-

frequency C-V measurements on bulk Si, which were found to be located around midgap. 

4.4 Summary 

A replacement gate process was used for the fabrication of p- and n-MOSFETs on SOI as 

well as on sSOI substrates with the alternative gate dielectrics LaLuO3, LaScO3, TbScO3 

and SmScO3. Specifically, apart from the MOSFET characteristics, the current gain and the 

mobility were investigated. HfO2 based MOSFET devices were used for comparison. As a 

high mobility channel material, sSOI substrates were used for comparison with SOI. 

It was found that, despite Rsd variations, among the n-MOSFETs with SOI substrate, 

LaLuO3, LaScO3 and TbScO3 provided superior performance. Much higher on current, con-
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sequently higher transconductance, as compared to SmScO3 and HfO2 MOSFETs, was ob-

served. Ion/Ioff ratios over 109 and a subthreshold slopes as low as 72 mV/dec were achieved 

with these devices. However, due to the high fringing field, also triggered by the non-con-

formal high-k deposition, actually a requirement for replacement gate process, pronounced 

GIDL was observed, which prevented even lower lower Ioff for the devices. The electron 

mobility extracted from split CV technique or static Id(Vg) curve amounts to ~179 cm2/Vs 

at an effective field of 0.24 MV/cm2, which is 1.5 times higher than the one obtained for 

SmScO3 or HfO2. However, a degradation in electron mobility for all high-κ dielectrics as 

compared to universal mobility data is observed due to high-k inherited OP phonon scat-

tering and RCS.   

Among the results obtained from FD-n-MOSFETs on biaxially strained SOI, LaLuO3, 

LaScO3 and TbScO3 provides much better performance than the HfO2 reference. As com-

pared to their SOI counterparts, an enhancement of 80%, 40% and 20% was achieved in 

the on current for LaLuO3, LaScO3 and TbScO3, respectively. The difference in the en-

hancements is due to the variation in Rsd for SOI and sSOI devices. The same subthreshold 

slopes for sSOI and SOI were achieved. Due to different reactions of each high-к oxide 

with the TiN metal gate a <ΔVT> shift was observed between SOI and sSOI devices. How-

ever, due to TiN related stress or, larger EOT, no ΔVT was observed for TbScO3 devices. 

The electron mobility was improved by 90% with sSOI substrates, and even higher mobil-

ities are expected for EOT below 1 nm. 

The long channel FD-p-MOSFETs were fabricated on SOI substrates, using LaLuO3 and 

LaScO3. Good transistor performance was observed. Almost ideal steep subthreshold 

slopes down to 65 mV/dec and high Ion/Ioff over 1010 were achieved. Their hole mobility is 

almost identical, however, slightly lower than the universal reference data but higher than 

what obtained with HfO2 or HfSiON. 

The investigation of GIDL on SOI and sSOI for LaLuO3, LaScO3 and TbScO3 reveals that 

trap assisted band-to-band tunneling occurs. The position of the traps, Et, associated with 

tunneling is extracted from the B parameter. While for SOI devices the traps are located 

around mid-gap, for sSOI devices with LaLuO3 and TbScO3 the level moved more to the 

valance band edge. Only for LaScO3 on sSOI the trap level remained around mid-gap po-

sition. These obtained results for SOI devices are in good agreement with the results ob-

tained from corresponding MOS capacitors. 
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Chapter 5 

 

Summary 
 

 

Investigation of higher-κ dielectric materials is important for scaling down the electronic 

devices for future nanoelectronics to replace Hf-based oxides that are currently being used. 

In this thesis, MBD grown LaLuO3 and LaScO3, E-gun deposited TbScO3 and PLD grown 

SmScO3 have been investigated, both, structurally and electrically. For the first time, their 

integration into MOSFETs has been successfully achieved using SOI and strained SOI sub-

strates. The composition of the films was studied by means of RBS, while XPS and TEM 

were used for morphology investigations. TEM together with XPS and TOF-SIMS were 

used to investigate the interfacial reactions with silicon substrate or top metal gate. Opti-

mization of the annealing was studied on LaLuO3 and LaScO3 gate dielectrics deposited on 

silicon to achieve the lowest defect states and leakage current density and finally applied 

to the whole gate dielectrics used in this study. The optimized conditions finally will reduce 

the amount of the mobility degradation and improve the performance in actual MOSFETs. 

The main findings and contributions of this work are summarized below. 

RBS measurements of LaScO3 and SmScO3 reveal, independently of the deposition 

technique, a stoichiometry with a ratio close to 1 between the metallic elements, La:Sc and 

Sm:Sc, respectively, by using appropriate growth conditions. FG annealing at 400 ºC to the 

MOS capacitor does not change the stoichiometry of the films. These materials have proven 

to show higher crystallization temperatures as compared to HfO2 which crystallize at 

550 ºC. SmScO3 remains amorphous on silicon up to 800 ºC and starts to crystallize at 

900 ºC, while LaScO3 crytallizes above 800 ºC. LaLuO3 and TbScO3 stay amorphous up to 

1000 ºC. Therefore, possible defect formation caused by the poly-crystalline structure due 

to elevated process temperatures could be avoided by using these materials. 

Detailed XPS and TOF-SIMS investigations of LaLuO3, LaScO3 and TbScO3 reveals 

silicate formation at the high-k/silicon interface which slightly increases after thermal 

treatment of the films in oxygen and FG ambient. According to the TOF-SIMS of 

TiN/LaLuO3 (TbScO3)/SiO2/Si, at first glance, the application of PDA at 400 ºC in oxygen 

and FG ambient seems to deteriorate the films in terms of the interfacial layer growth. 

However, as compared to a reference sample with PMA only, those samples after applying 
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PMA show better interface and oxide quality. PMA results in a reduced SiO2 interfacial 

layer thickness in the TiN/high-κ/SiO2/Si system due to the oxygen scavenging effect of 

the TiN metal gate. Anneals (PDA+PMA) help to increase the areal density of the high-κ 

by the reduced vacancy, during oxygen scavenging from the SiO2 interfacial layer,  which 

results in suppressed silicon diffusion towards the high-κ dielectric due to filled vacancies. 

This minimizes a possible mobility degradation. 

A comprehensive investigation of the electrical characteristics carried out on post metal 

annealed TiN/LaLuO3(LaScO3)/Si system showed that it is possible to achieve EOT as 

small as 0.6 nm with a low leakage current density down to 10-3 A/cm2. However, in order 

to improve the electrical properties and reduce the defects present in the oxide and at the 

oxide-silicon interface, PDA in O2 and FG are needed. PDA combined with PMA improves 

the interface quality with a lower defect states as low as 8x1010 (eVcm2)-1 and provide up 

to 4 orders of magnitude reduction in leakage current. Furthermore, the hysteresis is sup-

pressed and flat band voltage VFB shift is reduced, however the EOT increased due to the 

increase in the interfacial layer thickness. The application of PDA+PMA not only improves 

the CV characteristics of the films but also does not change the κ value. Compared to HfO2, 

LaLuO3, LaScO3, TbScO3 and SmScO3 offer significant higher κ values, ranging from 26 

to 32. Due to their higher-κ, it is possible to achieve smaller EOT with LaLuO3 and LaScO3 

as compared to HfO2 with a similar film thickness. However, because of the interfacial 

layer growth, caused by the deposition techniques, TbScO3 and SmScO3 show poorer EOT 

scaling.  Therefore, for all of the investigated high-κ oxides, further investigations on in-

terfacial layer scavenging are needed. 

Negligible hysteresis, low interface trap and oxide charges, and for a comparable EOT,  up 

to three orders of magnitude lower leakage current as compared to HfO2 make these mate-

rials attractive for next chip generations. However, further work should be carried out in 

order to suppress the oxygen vacancies in these materials, which are the most effective 

defects in reducing the metal work function and finally trigger the threshold voltage of the 

active devices.  

A replacement gate process for MOSFET has been developed. The integration of LaLuO3, 

LaScO3, TbScO3 and SmScO3 has been, for the first time, successfully achieved on fully 

depleted (FD) n-MOSFETs using SOI and sSOI substrates. LaLuO3, LaScO3 and TbScO3 

show very good transistor performance. Steep subthreshold slopes, as small as 72 mV/dec, 

high Ion/Ioff ratios over 108, and a low density of interface states in the range of                 

5x1011 (eVcm2)-1 could be achieved. MOSFETs with TbScO3, LaScO3 and LaLuO3 on SOI 

substrates reveal electron mobilities of 180, 183 and 188 cm2/Vsec, respectively. The sSOI 

n-MOSFETs show strongly enhanced transconductance and electron mobilities up to a fac-

tor of 1.8 compared to SOI reference devices.  The mobility and transconductance is en-

hanced because lifting of the band degeneracy increases the occupancy of the lower mass 

subband 2 and decreases carrier scattering due to the energy split between the 2 and 4 

valleys. 

Fully depleted p-MOSFETs with LaLuO3 and LaScO3 have also, for the first time, success-

fully achieved using SOI substrates. The obtained almost ideal subthreshold slope of 

65 mV/dec, high Ion/Ioff ratios over 109 and effective hole mobility comparable with 
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HfSiON on silicon and slightly better than what could be obtained with HfO2 on SOI make 

those material much more promising for CMOS applications.  

GIDL is observed, in both, p- and n-MOSFETs. High-κ layers with EOT<3 nm are used in 

this work, and since the high-κ depositions are not conformal (even thinner oxide at the 

channel edges), GIDL is an expected issue for such thin oxide layers. In summary the mo-

bility degrades due to the high-κ inherent soft optical phonon scattering (SO), remote Cou-

lomb scattering (RCS) and surface roughness. Impurities and metal gate-high-κ interface 

defects can also cause reduction in the mobility. Therefore, careful cleaning and process 

optimization is needed to minimize these effects. However, it should also be noted that, SO 

phonon scattering will always be observed due to the intrinsic properties of the high-κ ma-

terials.  

In order to determine the mobility of the rare-earth based ternary oxide, without any short 

channel effect and leakage problem, long channel devices with thick oxide layer 

(EOT>1.5 nm) were used. Therefore, as next step short channel devices with EOT<1 nm 

should be investigated.  
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