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1. Introduction

Gallium nitride (GaN) is a III-V semiconductor which is widely used in opto-

electronic devices, especially in lasers and light emitting diodes (LEDs). Due to

its wide band gap of approximately 3.4 eV at room temperature [1], GaN - like

related ternary group III-nitride semiconductors - is a material of choice for the

emission of light within the blue to near ultraviolet range [2]. Due to its appli-

cation in ultraviolet LEDs, GaN is deployed in microelectronic devices, but also

finds use in the medical field both for diagnostic and therapeutic purposes as well

as for the purification of air and water [3]. At present, the efficacy of devices based

on GaN is, however, limited by the quality of the bulk crystal material. Since

there are hardly any large bulk substrates available [4], almost all GaN films are

grown on substrates which exhibit a large lattice mismatch as well as a large ther-

mal mismatch using heteroepitaxy or are deposited onto pseudo substrates which

themselves were nucleated on mismatched substrates [3]. The mismatch induces

high concentrations of defects, of which dislocations negatively affect the proper-

ties of the device in particular. Dislocations in transistors, for example, can cause

a large reverse bias leakage [5] and threading dislocations have been associated

with luminescence at various wavelengths in GaN epitaxial layers [6].

Although group III-nitrides and especially GaN are already being used com-

mercially in optoelectronic devices, the knowledge of the general properties of

defects within these materials and of the interactions between the defects in par-

ticular is still limited: The electronic properties of dislocations, for example, are

debated controversially, with different groups reporting either only charged or only

uncharged dislocations or a mixture of both [7–14] depending on the type of dis-

location as well as on the material investigated. In addition, various ideas on the

origin of charges spanning from reconstructions of the dislocation cores, impuri-

ties, point defects, to strain [14–21] are being discussed. Similarly, the electronic
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1. Introduction

properties of other extended defects, such as v-shaped defects, are still not fully

understood [22].

To improve the quality of GaN substrates, the high concentrations of the var-

ious defects present, especially of dislocations, have to be reduced [23]. A large

variety of methods targeting the reduction of defects in GaN have been developed

recently, including epitaxial lateral overgrowth (ELO), patterning with semipolar

facets, introduction of interlayers into the material, and 3D to 2D growth tran-

sitions [23–33]. The aim of all these methods is to interrupt the propagation of

dislocations along the growth direction by bending their line direction. Crucial

factors for the optimization of the reduction of dislocations are the interaction be-

tween dislocations themselves, between dislocations and the growth front as well

as between dislocations and other defects. Unfortunately, rather little is known

about interactions of dislocations in GaN epitaxial layers [34–37].

Therefore, this thesis investigates the structure, electronic properties, and inter-

actions of extended defects in GaN epitaxial layers using cross-sectional scanning

tunneling microscopy (XSTM) and spectroscopy (XSTS). This study is divided

into four parts.

In Part I, theoretical principles and experimental techniques are presented.

Chapter 2 introduces the variables needed to characterize and simulate scanning

tunneling spectra with regard to tip-induced band bending. The physical prop-

erties of wurtzite structure gallium nitride are briefly noted in Chapter 3. In

Chapter 4, a methodology is presented which allows to reduce nonlinear distor-

tions in large scale scanning tunneling images by using information gained from

probing a custom-built calibration sample consisting of a single crystal Nb:SrTiO3

substrate equipped with an added periodical pattern of TiO2 features.

In Part II, a new approach is developed to probe the controversially debated

minimum of the empty GaN (101̄0) surface state. The results of ab initio calcula-

tions shown in Chapter 8 provide a set of experimental parameters which allow for

the empty surface state to be found below the minimum of the conduction band

and hence proven to be situated within the fundamental band gap as shown in

Chapter 9.

Part III addresses the formation and the characteristics of overgrown v-shaped

defects in gallium nitride epitaxial layers by investigating their geometric and
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electronic structure utilizing cross-sectional scanning tunneling microscopy and

spectroscopy. Using a doping modulation presented in Chapter 11 to determine

the opening angle of the v-shaped defects, these defects are found to be three-

dimensional hexagonal pyramidal structures defined by six inclined {112̄2} facets

in Chapter 12. The defects exhibit inhomogeneous electronic properties which

arise from the presence of deep traps. Additionally, the v-shaped defects meander

perpendicular to the growth direction, as shown in Chapter 13.

In Part IV the interactions between dislocations themselves, between disloca-

tions and the inclined growth front as well as between dislocations and other defects

are investigated. A comparison of the spatial distribution of the dislocations and

their line directions in Chapter 15 reveals the dislocations being bent away from

the semipolar facets of the v-shaped defects. The dislocations are found to form

bundles of dislocations with parallel projected line directions. For a better char-

acterization of dislocations, a method for the determination of the angle between

the line of a dislocation intersecting the surface and the cleavage surface itself is

presented in Chapter 16. Chapter 17 summarizes the results of this work.
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Theoretical principles and

experimental techniques
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2. Theory of the scanning tunneling

microscope

2.1. Fundamental theory

2.1.1. One-dimensional tunneling effect

In classic electrodynamics, an electron with energy E cannot pass a barrier of

height V0 as long as E is smaller than V0. In quantum mechanics, however, there

is a finite probability for the electron to enter the barrier and even for passing

it [38]. Considering the one-dimensional case of a time-constant potential V (z) of

height V0 and width z0, as shown in Figure 2.1, as well as an electron of mass m

and energy 0 < E < V0, the electron can be described by a complex wave function

ψ(z), if ψ(z) is a solution to the one-dimensional Schrödinger equation:

− ~2

2m

d2

dz2
ψ(z) + Vp(z)ψ(z) = Eψ(z) (2.1)

For −∞ < z < 0 and z0 < z <∞, ψ(z) is a planar wave function. For 0 < z < z0,

however, ψ(z) is an evanescent wave:

ψ(z) ∼ e−κz (2.2)

with a decay constant, κ, given by:

κ =

√
2m(V0(z)− E)

~2
(2.3)
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2. Theory of the scanning tunneling microscope

Figure 2.1. Quantum tunneling in one dimension for an electron traveling
in the −z to z direction. (a) Time-constant potential V (z) with height V0.
(b) Real part Re(ψ) of the wave function ψ(z) which is a planar wave when
outside of the barrier (−∞ < z < 0 and z0 < z < ∞) and an evanescent
wave within the potential barrier (0 < z < z0 range). (c) Probability density
|ψ(z)|2 of the electron in real space. The probability of the electron being
located in the z > z0 range is smaller than that of the z < 0 regime due to
the evanescent wave function within the potential, ψ(z) ∼ e−κz, which causes
an exponential decrease in the probability of the electron being in the z > z0

range.

Figure 2.1(c) depicts the probability density |ψ(z)|2 of the electron in real space.

For electrons traveling in the −z to z direction, the probability of the electron

being situated in the z > z0 region is smaller than that of the z < 0 regime. It is,

however, greater than zero, as long as z0 is small enough. This is a consequence of

the evanescent wave function within the potential, ψ(z) ∼ e−κz, which causes an

exponential decrease in the probability of the electron being in the z > z0 range

with increasing z0.
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2.1. Fundamental theory

The scanning tunneling microscope utilizes this very effect. The tip is brought

into close proximity z to the sample (located at z=0), with z being small enough

for electrons to tunnel from the tip into the sample or vice versa, depending on the

polarity of the voltage applied to the gap between tip and sample. While scanning

the tip across the surface, any difference in the local elevation of the surface will

change the distance between tip and sample and because of ψ(z) ∼ e−κz influence

the current. If the tip is solely moved horizontally, the change in the current can

directly be related to the change in height of the surface of the sample. Images

acquired using this method are called constant-height images. A more commonly

used technique is keeping the current constant while scanning the tip across the

surface. This case necessitates a vertical adjustment of the tip position during the

horizontal movement in order to keep z constant and thus keeping the tunneling

current constant. Information on the structure of the surface is then gained by

recording the vertical movements of the tip and the images acquired in this matter

are called constant-current images. A theoretical description of the quantification

of the tunneling current is presented below.

2.1.2. Tunneling current

According to the approach developed by Bardeen, the tunneling current between

the sample and the tip can be calculated using perturbation theory [39]. The

current in first order perturbation theory can be written as:

I =
2πe

~
·
∑
t,s

f(Et) [1− f(Es + eV )] · |Mts|2 · δ (Et − Es) (2.4)

with V being the voltage applied between the tip and the sample, Mts the matrix

element of the transition of a state ψt in the tip to a state ψs in the sample, Et and

Es the energies of the states ψt, ψs, respectively, and f(E) being the Fermi-Dirac

distribution shown in Equation 2.5:

f(E) =
1

1 + e
E−EF
kBT

(2.5)
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2. Theory of the scanning tunneling microscope

Equation 2.4 exhibits a strong similarity to Fermi’s Golden Rule [40, 41], which

describes the transition of a state n with energy εn into another state n′ with

energy εn′ :

Γn→n′ =
2π

~
· |Mn′n|2 · δ (εn′ − εn) (2.6)

Assuming low temperatures, small gap voltages, and conservation of energy, Equa-

tion 2.4 can be simplified to:

I =
2π

~
· e2V ·

∑
t,s

|Mts|2 · δ(Es − EF ) · δ(Et − EF ) (2.7)

In their continuative approach [42, 43], Tersoff and Hamann assume that both

tip and sample have the same work functions Φt = Φs ≡ Φ and that the tip can

be considered having an s-type orbital with a radius of curvature R as shown in

Figure 2.2. They further assume that the wave functions of the tip are extremely

localized. This allows the simplification of Equation 2.7 to:

I ∝
(

32π3e2V Φ2R2

~κ4

)
· e2κR ·Dt(EF ) · ρ(~r0, EF ) (2.8)

where Dt is the density of states of the tip per unit of volume and ρ(~r0, EF ) is the

density of states of the sample at the Fermi energy being measured at the position

~r0 of the tip above the surface. Consequently, Equation 2.8 primarily states a

proportionality of the tunneling current to the local density of states ρ(~r0, EF )

of the sample close to the Fermi energy EF at the position of the tip above the

surface of the sample, ~r0:

I ∝ ρ(~r0, EF ) (2.9)

If solely the vertical distance between tip and sample, z, is taken into account,

ρ(~r0, EF ) can be transformed to

ρ(~r0, EF ) = ρ(z, EF ) = ρ(z=0, EF ) · e−2κz (2.10)

with B being the height of the barrier and κ being the inverse decay length, defined

as:

κ =

√
2mB

~2
(2.11)
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2.1. Fundamental theory

Figure 2.2. Schematic representation of the tip-sample configuration used
in the Tersoff-Hamann model. The tip is approximated to be of spherical
shape having a radius of curvature R with its center at ~r0. During scanning
tunneling microscopy experiments, the tip is brought into close proximity to
the sample, with the distance between the apex of the tip and the surface of
the sample being z.

Hence, Equation 2.9 can be simplified to:

I ∝ ρ(z=0) · e−2κz (2.12)

and further to:

I = I0 · e−2κz (2.13)

When using scanning tunneling microscopy on metal samples, the approximation

presented in Equation 2.9 is particularly applicable since the density of states of

energies close to the Fermi energy is almost constant. In this case, the transmission

of electrons through the vacuum barrier can be considered to not show a significant

dependence on the energy of the states involved, as long as only small gap voltages

are applied. For tunneling into a semiconductor, however, larger gap voltages are

necessary to overcome the band gap. In this case, every single state with an energy

between the Fermi energy of the sample and the Fermi energy of the tip contributes

to the tunneling current. Furthermore, every state faces a different barrier height.

Using the Wentzel-Kramers-Brillouin approximation, the tunneling current for

tunneling into a semiconductor can be written as the integral of all contributing

17



2. Theory of the scanning tunneling microscope

states [44], i.e. the states which are defined by the gap voltage V :

I ≈
∫ eV

0

ρs(z=0, ε) · T (ε, eV, z, U)dε , (ρt ≈ const.) (2.14)

where T (ε, eV, z, U) is the transmission coefficient for an electron with energy E at

a gap voltage V and a potential U = EF−EV and the elementary electric charge, e,

is supposed to be positive. According to Equation 2.13, the transmission coefficient

strongly depends on the distance between tip and sample and can be approximated

by:

T (ε, eV, z, U) = exp

(
−2z
√

2m

~
·
√

ΦSC + Φt

2
+
eV

2
− ε

)
(2.15)

The term
(

ΦSC+Φt

2
+ eV

2
− ε
)

is the effective barrier height with the work function

of the semiconductor, ΦSC, being defined as:

ΦSC = Evac − EF = Evac − EV︸ ︷︷ ︸
χ+Egap

+ (EV − EF )︸ ︷︷ ︸
=−U

(2.16)

As a consequence, the transmission coefficient and hence the tunneling current

depend on the potential U .
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2.2. Theory of the band structure

2.2. Theory of the band structure

A more detailed understanding of the connection between tunneling current and

the band structure of the sample and tip is required to interpret scanning tunneling

microscopy images. Figure 2.3 shows the schematic band structure for a positive

gap voltage being applied between the tip and a semiconductor1. If a positive gap

voltage2 is applied, electrons tunnel from the tip into the empty conduction band

of the sample. The images acquired are thus called “empty state images”.

Figure 2.3. Schematic band structure for a positive gap voltage2 being applied
between the tip and a semiconductor with definition of important parameters1.
In the given case, electrons tunnel from the tip into the empty conduction
band of the sample.

1To enable a fast access to the detailed definition of the numerous prameters in this figure, they
are listed in Chapter “Symbols” on page 135.

2The voltage is applied with the sample carrying the positive sign.
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2. Theory of the scanning tunneling microscope

2.2.1. Fermi level

A very important quantity is the Fermi energy, also called Fermi level. The Fermi

level is defined as the energy of the energetically highest state still occupied by

electrons at temperature T = 0 K in the state of equilibrium [45]. The Fermi level

of a semiconductor can be determined by its net charge balance and vice versa.

For a semiconductor in a state of equilibrium, the net charge balance is:

n+N−a = p+N+
d (2.17)

where the concentration of negative charges due to electrons, n, and ionized ac-

ceptors, N−a , has to be equal to the concentration of positive charges caused by

holes and ionized donors, p, N+
d , respectively. The balance is determined by the

energetic position of the Fermi level, EF . According to Sze [46], the concentrations

of electrons and holes are:

n = NC ·
2√
π
· F1/2

(
EF − EC
kBT

)
(2.18)

p = NV ·
2√
π
· F1/2

(
EV − EF
kBT

)
(2.19)

with EC being the energy at the bottom of the conduction band and EV being

the energy at the top of the valence band. NC and NV are the effective density

of states in the conduction band and in the valence band, respectively. They are

defined as:

NC = 2 ·
(

2πm∗nkBT

h2

) 3
2

(2.20)

NV = 2 ·
(

2πm∗pkBT

h2

) 3
2

(2.21)
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2.2. Theory of the band structure

with m∗n and m∗p being the effective mass for electrons and holes, respectively.

F1/2(x) is the Fermi-Dirac integral given by:

F1/2(x) =

∞∫
0

η1/2

1 + eη−x
dη (2.22)

The concentrations of ionized donors and ionized acceptors are:

N+
d = ND ·

1

1 + 2 · e
EF−ED

kBT

(2.23)

N−a = NA ·
1

1 + 2 · e
EA−EF

kBT

(2.24)

where ED and EA are the energy levels of donors and acceptors, respectively, ND

is the concentration of donors and NA that of acceptors.

2.2.2. Tip-induced band bending

When metal tips are used for the investigation of semiconductors by scanning tun-

neling microscopy, two materials with (very) different work functions, Φm for the

metal tip and ΦSC for the semiconductor, are brought into close proximity. If the

gap is small enough, electrons will tunnel from the material featuring the ener-

getically lower work function into the other material. With every electron being

transferred, the charge balance changes slightly, which consequently requires an

adaption of the Fermi level of both materials. After a certain amount of electrons

has been transferred from one material to the other one, the energetic positions

of the respective Fermi levels align and no further electrons will be transferred.

Due to the changed charge balance, neither material is electrically neutral any-

more, which causes the built up of an electric field, ξvac, within the gap. This

field is screened by free electrons in the metal and by free carriers due to dopants,

defects or ionized surface states in the semiconductor. While the effective length

of screening in the metal is the Thomas-Fermi screening length, the space charge

region, w, in the semiconductor is much more extended.
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2. Theory of the scanning tunneling microscope

When additionally applying a gap voltage V , the difference in the electrostatic

potentials, Vvac, shifts the energetic positions of the surface of the conduction band,

ECS, and the surface of the valence band, EVS. The difference in the electrostatic

potentials can be written as:

Vvac = ξvac · d (2.25)

with d being the separation of tip and sample. The difference of the work functions

is also known as the contact potential:

∆Φ = Φm − ΦSC (2.26)

= Φm − χSC − (ESC − EF ) (2.27)

where χSC is the electron affinity of the semiconductor and the magnitude of the

barrier potential φs is related to the charge density ρ by Poisson’s equation, which,

for the one-dimensional case, can be written as:

d2φ(x)

dx2
= −ρ(x)

εε0

(2.28)

with ε and ε0 being the dielectric constant of the semiconductor and the permit-

tivity in vacuum, respectively.

As a result, the shifted energetic positions of the surface of the conduction band,

ECS, and the surface of the valence band, EVS, are:

ECS = ECB − (Eg + EF ) + eφs (2.29)

EVS = EVB − (Eg + EF ) + eφs (2.30)

where Eg denotes the energy of the band gap and ECB and EVB are the energetic

positions of the valence band edge and the conduction band edge, respectively, in

the bulk material.
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3. Properties of wurtzite gallium

nitride

Gallium nitride (GaN) is a group III-nitride semiconductor which typically crys-

tallizes in the wurtzite structure1. The lattice parameters of the hexagonal crystal

structure of wurtzite GaN at a temperature of T = 300 K are a = 3.189 Å and c

= 5.185 Å [1]. GaN has a wide direct band gap of 3.51 eV [1] at a temperature of

0 K. At room temperature, the band gap is approximately 3.4 eV, as resulting from

the empirical formula by Varshni [47] shown in Equation 3.1 with a temperature

T = 300 K and α and β being 0.909 meV/K and 830 K, respectively [1]:

Eg(T ) = Eg(0)− α · T 2

T + β
(3.1)

The most important crystal planes in wurtzite GaN are presented in Table 3.1.

Plane Index Polarity

c-plane (0001) polar
a-plane (112̄0) nonpolar
m-plane (101̄0) nonpolar
r-plane (11̄02) semipolar

Table 3.1. Miller indices of the most important crystal planes in wurzite
GaN. The samples investigated for this thesis were cleaved along the non-
polar m-plane.

The c-plane exhibits the hexagonal characteristics of the wurtzite structure. When

cleaving wurtzite GaN perpendicular to its c-plane, the resulting surface may be

1GaN can also exhibit the zinc blende structure, however, the only stable structure for GaN is
the wurtzite structure.
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3. Properties of wurtzite gallium nitride

Figure 3.1. Definition of lattice vectors perpendicular to the c-axis of wurtzite
GaN (superlattice). The three unit vectors within the c-plane are |~a1| = |~a2| =
|~a3| = a in length with a = 3.189 Å. The fourth unit vector is c = 5.185 Å
in length [1]. As a result to the hexagonal structure, there are six m-planes
and six a-planes, whose intersection lines with the c-plane are indicated by
dashed lines. The angle between planes of the same type is n·60°, whereas the
angle between two planes of different types is (2n+1)·30°.

either an a-plane or an m-plane. Despite both types of surface being nonpolar,

experiments show that GaN prefers to expose an m-type surface [48]. Important

parameters of the structure of wurtzite GaN are shown in Figure 3.1. As a result

of the hexagonal structure, there are six m-planes and six a-planes (intersection

lines with c-plane in Figure 3.1). The angle between planes of the same type is

n·60°, whereas the angle between two planes of different types is (2n+1)·30°.

The surface structure of the a-plane and the m-plane in side and top view as

well as the corresponding surface Brillouin zones are depicted in Figure 3.2. On

both the a and the m-plane, the N surface anions relax outward into the vacuum

relative to the Ga cations [49]. GaN wurtzite structure cleavage surfaces exhibit

an occupied as well as an empty state above the N anion and the Ga cation,
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respectively. A charge transfer from the Ga dangling bond to the N dangling bond

occurs. The most important points in both Brillouin zones are the Γ̄, X̄, M̄ and

the X̄ ′ points.

Figure 3.2. Surface structure and definition of important points in the GaN
surface Brillouin zones according to Wang [50]. (a) m-plane side-view show-
ing filled N (striped) and empty Ga dangling bonds. (b) m-plane top-view.
(c) m-plane surface Brillouin zone. (d) a-plane side-view. (e) a-plane top-
view. (f) a-plane surface Brillouin zone. The most important points in both
Brillouin zones are the Γ̄, X̄, M̄ and the X̄ ′ points.
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4.1. Preparation of samples

Rectangular samples with a width and height of approximately 3 mm and 7 mm,

respectively, were cut from a gallium nitride wafer. For a better cleavage, the

samples were thinned and polished using a grinding machine until a thickness of

less than 100µm was attained, as can be discerned from the cross-sectional view in

Figure 4.1(c). To improve the conductivity of the contact of sample and specimen

holder, a layer of gold was sputtered onto the sample surface (±c-plane), as can

be discerned as a golden layer at both ends of the sample shown in Figure 4.1(b).

The layer of gold and the sample were joined by applying short pulses of current

to the interface of the two materials.

To create a predetermined breaking point on the sample, a diamond tip was

indented into the surface creating a small indented spot and a crack. Predeter-

mined breaking spots like these were inserted approximately every 500 µm forming

a straight line across the sample. Two of these indented spots are shown in Fig-

ure 4.1(a). Afterward, the sample was glued onto a cube of metal in such a matter,

that one third of the sample at most was in contact with the metal cube using a

conducting glue that contains large amounts of silver. This cube was then mounted

to a specimen holder which was inserted into the vacuum chamber. To cleave the

sample in situ, its non-attached part was forced against a firm overhang. This

way, the bending force applied to the crystal initiated cleavage, preferably at the

indented spots, resulting in a clean and atomically flat surface. A sample with

the cleaved part still attached to the sample holder by excess glue is shown in

Figure 4.1(b). The cleaved surface is shown as a top-view in Figure 4.1(c) and a

side-view in Figure 4.1(d).
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(a) (b)

(c) (d)

Figure 4.1. Preparation of samples. To create a predetermined breaking point
on the sample, a diamond tip is indented into the surface creating small
indented spots and cracks (a). To cleave the sample in situ, it is attached to
a metal cube, transferred into the preparation chamber of the STM where the
part is forced against a firm overhang. This way, the bending force applied
to the crystal initiates cleavage (b), preferably at the indented spots, resulting
in a clean and atomically flat surface (c)1 and (d).
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4.2. Preparation of tips

Tungsten tips were used for all experiments. For the preparation of the tips, a

tungsten wire with a diameter of 0.25 mm is inserted into a flat droplet of sodium

hydroxide solution, suspended in a ring of platinum wire. Additionally, a constant

voltage is applied between platinum wire and the tungsten wire with the latter one

having a positive bias. With a distinctive frequency of approximately one Hertz,

the sign of the voltage is reversed for a short time, creating small pulses. In this

matter, the surface of the tungsten wire is cleaned, resulting in an enhancement

of the etching. The actual process of etching occurs while the tungsten wire has a

positive bias:

anode : W(s) + 8(OH)− →WO2−
4 + 4H2O + 6e−

cathode : 6H2O + 6e− → 3H2(g) + 6(OH)−

total : W(s) + 2(OH)− + 2H2O→WO2−
4 + 3H2(g)

4.3. Correction of nonlinear distortions in STM

images

This study uses large scale scanning tunneling microscopy images with several mi-

crometes in size like the one shown in Figure 4.2. Scanning tunneling microscopes

usually position their tip utilizing piezo-crystal tubes, whose application requires

a calibration of their lateral and vertical positioning. Since scanning tunneling

microscopes are mainly used for imaging surfaces with atomic resolution, the cali-

bration of the piezo-crystals is optimized for ranges between one and a few hundred

nanometers. Due to the large scale of the images acquired within this study, the

parameters used to perform the measurements exceed the designated linear range

of the calibration. This results in the occurrence of a variety of nonlinear effects

of the piezo-crystals such as hysteresis creep, drift, and a nonlinear dependence of

the displacement on the applied voltage, which, in most cases, causes distortions

of the image [51].

1The scale is an internal light microscope measuring unit which is to be disregarded.
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5 µm (nom.)

Figure 4.2. Measurement of a GaN epitaxial layer with a nominal size of
15 µm ×15 µm. Without further information, neither can actual distortions
be discerned from the image, nor is it possible to determine the real size of
the area having been investigated.

By using a calibration sample, a fast and reliable method for correcting nonlinear

distortions after the measurement was developed within this study2. The sample

was designed to exhibit regular nanostructures with a great accuracy concerning

the distances between the features. The underlying idea was to investigate the

calibration sample while utilizing many different sets of parameters, in particular

those usually used within the actual measurements. Due to the knowledge of the

actual geometry of the sample, a displacement tensor can then be computed after

having measured a distorted image of the surface [52]. Applying the inverse of

this tensor to any image acquired using the same set of parameters facilitates the

correction of the image. The main advantage of this method is the ability to easily

2The calibration sample was produced by D. Weber, S. Trellenkamp, R. Borowski, and L. Jin
according to set requirements.
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4.3. Correction of nonlinear distortions in STM images

correct various distortions without knowing their origin or having a quantitative

description thereof. However, this procedure has to be re-performed for every

individual scanning tunneling microscope.

4.3.1. The calibration sample

The substrate of the calibration sample was a Nb:SrTiO3 single crystal. This

material was chosen not only because of its resistance to oxidation or to degra-

dation up to very high temperatures, but also because of its nature as an n-type

semiconductor with a band gap of about 3 eV and resulting comparable properties

to GaN, as well as the intrinsic chemical resistance of the compound. The dots

were made of Ti due to its excellent adhesion to SrTiO3, where it oxidizes to TiO2,

which in turn is electronically very similar to Nb:SrTiO3 and ensures a good charge

transfer even in case of oxidation. Both metal and oxide are mechanically stable

without exhibiting any surface oxidation in most mediums. The application of

lift-off and electron beam lithography enable the achievement of a high resolution

of the pattern, with the electron beam writer ensuring a positioning accuracy of

better than 5 nm on a 320 µm× 320µm field. Hence, the error of the dot pitch

of 1% is much smaller than the distortion created by piezo nonlinearities and is

therefore neglected in the following. The patterned dots are approximately 10 nm

in height and are arranged as shown in Figure 4.3(b). The vertical and lateral

spacing between the dots is 500 nm. Every fifth dot has a more pronounced size

and every tenth dot is replaced by four dots forming a small dotted square. This

enables the determination of the position of the tip.

4.3.2. Correction of distortions

Without knowing details of the sample structure, the image presented Figure 4.2

appears to be a normal scanning tunneling image and distortions cannot be identi-

fied. To gain an understanding of the distortions occurring during the acquisition

of large images on the employed scanning tunneling microscope, the calibration

sample prepared as described in Section 4.3.1 was investigated. The scanning

tunneling image acquired from the calibration sample is shown in Figure 4.3(a).

According to the STM data, the image supposedly has a size of 10 µm× 10 µm.
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a

a

a

a

b≠a

c≠b≠a

5000 nm (nom.)

(a) Distorted STM image

5000 nm

(b) Calibration pattern

Figure 4.3. STM image of the calibration sample with a nominal size of
10µm×10µm (a). Counting the dots and considering their real distance of
500 nm as shown in (b), however, results in a real size of about 12.5µm width
and 15µm height for the image in (a). While the discrepancies in size are
a result of distortions, the slight rotation of the grid in (a) is merely due to
inaccuracies of the sample holder and the process used to fix the sample to
it. The marked square in (a) has an actual edge length of a = 2500nm.

Counting the dots visible in the image, however, and computing the size from

the spacing between the dots of 500 nm reveals that the analyzed area is actu-

ally 12.5 µm× 15 µm in size. The original pattern of the calibration sample has a

squared geometry where any six horizontally and six vertically neighboring dots

form 6×6 dot squares with an edge length of a = 2500 nm. While the dots located

at the lower right hand side of the measurement in Figure 4.3(a) maintain the

squared geometry, dots on the left hand side are displaced, with 6×6 dot areas

forming a rectangle with neither of the two pairs of edges b and c being equal

to a and c being greater than b. These results denote a bigger distortion of the

image in the horizontal direction than the vertical one. Furthermore, the apparent

horizontal dot separation in the lower left part of the image is almost twice the dot

separation in the upper right part, therefore not only showing a difference between

horizontal and vertical distortion but also a dependency on the position within the
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5000 nm

(a) Calibration pattern

a

a
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a

a

a
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a

a

a

a

5000 nm

(b) Corrected image

Figure 4.4. (a) Calibration pattern. (b) Corrected image. Each 6× 6 dot
area now forms a square with the same edge length as the pattern in Fig-
ure 4.4(a). The image seems to be horizontally compressed compared to the
raw STM image in Figure 4.3(a).

image. The experiments revealed that distortion does not primarily depend on the

scan speed or movements of the piezo tube that have been performed prior to the

scanning of the image, while the size of the scan area as well as its rotation angle

do affect the distortions most significantly.

With the aim of correcting the distortions, the displacement of the dots in

Figure 4.3(a) has been quantified using a custom software developed within the

research group [52, 53]. After analyzing the distorted image, a tensor containing the

quantified distortion could be computed, which, henceforward, was used to correct

the distorted images. The corrected image of the calibration sample is shown in

Figure 4.4(b), demonstrating that each 6×6 dot area now forms a square with

the same edge length as the pattern in Figure 4.4(a). Due to the predominance of

distortions in the horizontal direction, the corrected image seems to be horizontally

compressed as compared to the raw STM image in Figure 4.3(a).

This procedure has been performed with a large variety of different scanning

parameters so as to be able to compute as many different distortion tensors as

possible. In this matter, every image used for this study was corrected using an
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5 µm

Figure 4.5. Corrected image. The image presented in Figure 4.2 has been
corrected using an appropriate distortion tensor as obtained by probing the
calibration sample with the exact same parameters as used for the measure-
ment of this STM image. The square image in Figure 4.2 has a nominal with
of 15 µm. The corresponding square frame surrounding Figure 4.5 which re-
sults from the correctional calculations, however, has a width of about 24 µm,
proving that Figure 4.2 is actually covering an area much larger than re-
ported by the software controlling the measurement. Additionally, the cor-
rected image does not retain a squared geometry, representing the fact, that
the distortions in horizontal (x) and vertical (y) direction differ significantly.

appropriate distortion tensor.

The significant changes resulting from the application of the correction algo-

rithm to the acquired STM raw images and resulting importance of performing

said correction process is demonstrated in Figure 4.5, displaying the corrected ver-

sion of the image presented in Figure 4.2. Figure 4.2 has been corrected using a

distortion tensor obtained by probing the calibration sample with the exact same

scanning parameters as used for the acquisition of the image. While Figure 4.2
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4.3. Correction of nonlinear distortions in STM images

has a nominal width of 15 µm, the square frame surrounding Figure 4.5 which

results from the calculations3, however, has a width of about 24 µm, proving that

Figure 4.2 is actually covering an area much larger than reported by the software

controlling the measurement. Additionally, the corrected image does not retain

a squared geometry, representing the fact that the distortions in horizontal and

vertical direction differ significantly.

The presented methodology results in a significant improvement of accuracy of

measurements of distance and angle in large scanning tunneling images.

3Further details and explanations concerning the algorithm used for the computation of the
distortion tensor can be found in [52]: M. Schnedler, P. H. Weidlich, V. Portz, D. Weber,
R. Dunin-Borkowski, and Ph. Ebert. “Correction of nonlinear lateral distortions of scanning
probe microscopy images”. In: Ultramicroscopy 136 (2014), 86–90.
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5.1. Experimental details of Part II

For both the initial and the modified experiment, free-standing n-type GaN sam-

ples with a nominal average dopant concentration of (1−5)× 1018 cm−3 were used.

After having been prepared as presented in Chapter 4, they were cleaved in ultra

high vacuum with a pressure of approximately 1 × 10−8 Pa in order to expose a

clean and stoichiometric (101̄0) surface. Immediately after the cleaving process,

the samples were cooled to 77 K and investigated by an Omicron LT-STM equipped

with tungsten tips. The samples are shown in Figure 5.1.

5 mm

Figure 5.1. (a) GaN samples with a nominal dopant concentration of
(1−5)× 1018 cm−3. They were cleaved in ultra high vacuum with a pressure
of approximately 1 × 10−8 Pa in order to expose a clean and stoichiometric
(101̄0) surface.
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5.2. Experimental details of Part III and Part IV

Gallium nitride samples with n-doped GaN epitaxial layers (n-type dopant concen-

tration of approximately 1×1017 to 5×1018cm−3) were prepared for the investigation

according to the procedure described in Chapter 4. The samples were cleaved in

ultrahigh vacuum (1×10−8 Pa) along a (101̄0) m-plane and the orientation of the

wafer was determined by Laue diffraction measurements as shown in Figure 5.2(a).

(a) Laue diffraction image

5 mm

(b) Characteristic samples

Figure 5.2. Sample preparation: (a) Representative Laue diffraction image
of the uncleaved wafer recorded for the determination of the orientation of
the crystal lattice. (b) Prepared samples (gold sputtered) before cleavage.

For the actual measurements, a variable temperature Omicron STM equipped

with electro-chemically etched tungsten tips was used and operated at room tem-

perature1. After in situ cleavage, the freshly exposed cross-section of the m-plane

was widely flat and free of defects. As a consequence, large scale scanning tunneling

images could be acquired. These images were corrected as depicted in Chapter 4

to minimize nonlinear distortions induced by the increased movements due to the

large scan area.

1For the preparation of the tungsten tips, see Section 4.2.
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Part II.

Hidden surface states at GaN

(1010) surfaces
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6. Introduction

For cross-sectional scanning tunneling experiments, the GaN freestanding wafers

and epitaxial layers are cleaved on m-planes ((101̄0) surfaces). To interpret the ex-

perimental data, it is important to know the electronic and geometric structure in

detail. The m-planes are also highly relevant for GaN nanowires, since nanowires

exhibit an extremely high surface-to-volume ratio as compared to conventional

semiconductor devices. Consequently, surface-induced effects dictate many prop-

erties of nanowires. The distribution of dopants and hence the distribution of

potential in particular is largely affected by surface states. If surface states within

the fundamental band gap of sidewall facets of the nanowire were present, they

might even lead to paths of non-radiative recombination and thus reduce quan-

tum efficiency. According to Bertness [54] and Largeau [55], the non-polar m-

and a-plane sidewall facets are the most important surfaces for wurtzite structure

group III-nitride nanowires. Despite its great importance, the electronic struc-

ture of the GaN (101̄0) m-plane surface has not been sufficiently investigated yet.

Particularly, the presence of a surface state within the fundamental band gap is

controversially being discussed and hence its influence on the electronic properties

of nanowires remains unknown [56].

Calculations using density functional theory within the local density approxi-

mation predict the presence of two surface states shifted out of the fundamental

band gap [57, 58]. Recent density functional theory calculations based on modified

pseudopotentials, however, predict the upper (empty) surface state to be within

the fundamental band gap for any point in the first Brillouin zone [59, 60]. Exper-

imental techniques like scanning tunneling microscopy (STM), however, were not

able to probe any of the surface states in the band gap [58, 61].

In this Part, the results of ab initio calculations, as presented in Chapter 8, are

used to obtain a set of experimental parameters to successfully probe the empty
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gallium surface state by conducting a modified scanning tunneling microscopy

experiment. The modified experiment and its results are presented in Chapter 9.

Contents of Part II have recently been published in [62]: L. Lymperakis, P. H.

Weidlich, H. Eisele, M. Schnedler, J.-P. Nys, B. Grandidier, D. Stievenard, R. E.

Dunin-Borkowski, J. Neugebauer, and Ph. Ebert. “Hidden surface states at non-

polar GaN (1010) facets: Intrinsic pinning of nanowires”. In: Applied Physics Let-

ters 103 (2013), 152101.
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7.1. Experimental results

The in situ cleaved surfaces predominantly consisted of large terraces of up to

several micrometers in size. These GaN (101̄0) terraces were separated by steps

with a height of one to three monolayers (ML). Such a step, separating two terraces,

is shown in inset (a) next to its averaged height profile across the step in Figure 7.1.

The terraces exhibited a 1×1 reconstruction as visible in inset (b) of Figure 7.1.

This is in good accordance with theoretical calculations and prior STM images of

GaN [58] and other wurtzite structure compound semiconductor m-plane cleavage

surfaces [63].

In addition to imaging the terraces, scanning tunneling spectra (STS), I(V ),

as well as conductivity spectra, dI(V )/dV , were acquired on the terraces. The

latter spectra are also known as differential conductivity spectra. The normalized

conductivity can be defined as:

normalized conductivity =
dI

dV

/〈
I

V

〉
(7.1)

where, for simplicity, I(V ) is replaced by I. To obtain the differential conductivity,

either the total current I(V ) can be numerically differentiated as a function of V or,

if available, it can be directly measured by extracting the amplitude (and phase)

from the signal of a Lock-In amplifier. The differential conductivities presented in

this Chapter have been measured using such a Lock-In amplifier. The normalized

differential conductivity is shown in Figure 7.2.
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Figure 7.1. Averaged height profile across the step shown in inset (a). The
height of the step shown is one atomic layer. Nearly all terraces measured
in various areas of the sample were separated by steps between one and three
monolayers in height. Inset (a): STM image of an n-type GaN (101̄0) sur-
face measured at +4.26 V and 5 pA showing two large terraces separated by
a monoatomic step. Inset (b): High resolution STM image of an n-type
GaN (101̄0) surface measured at +3.0 V and 200 pA showing a 1×1 recon-
struction.

7.2. Discussion of the tunneling spectra

According to Feenstra [64] and Tersoff et al. [43], the differential conductivity

dI(V )/dV is directly proportional to the density of states:

dI(V )

dV
∝ ρS(~r0, EF ) (7.2)

with ρS(~r0, EF ) being the density of states of the sample at the position of the tip

~r0. In the present case, however, the interpretation is not that simple. At negative

44



7.2. Discussion of the tunneling spectra

Figure 7.2. Normalized differential conductivity spectrum measured at 77 K.
The tip-sample separation z was kept constant by applying a set voltage Vset

of +2.8 V and a set current of Iset = 150 pA. At negative voltages a number
of peaks SQ occur, which arise from quantized states confined within the zone
of tip-induced band bending below the position of the tip. No intrinsic surface
states can be observed in the GaN band gap.

voltages well within the band gap of n-type GaN, a few peaks labeled SQ are visible.

They arise from quantized states confined within the zone of tip-induced band

bending below the position of the tip [65, 66]. Since these states do not directly

contain information on the band edges, they will not be investigated. Empty states,

however, are of great interest. As can be seen in Figure 7.2, the onset of the current

due to the empty states of the conduction band is at approximately +0.9 V which

is in good accordance with the previous STS data on GaN (101̄0) surfaces [58,

61] and can be related to the minimum of the bulk conduction band, EC [58,

61]. The absence of a detectable current below the onset of the current into the

conduction band suggests that there are no intrinsic surface states present within
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the fundamental band gap. These initial results seem to support the calculations

which predict the absence of said surface states [57, 58].
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8. Ab initio calculations

8.1. Calculation method

For a more thorough characterization of the electronic structure of the experi-

mentally probed m-plane GaN surface (shown in Figure 8.1), first principle cal-

culations within density functional theory (DFT) using the local density approx-

imation (LDA) and the projector augmented wave approach (PAW) [67, 68] have

been performed by L. Lymperakis at the Max-Planck-Institut für Eisenforschung

in Düsseldorf, Germany. Within the calculations, Ga semicore d-states have been

explicitly treated as valence electrons and an on-site Coulomb interaction U for

these states has been included [69]. This approach yields a fundamental band gap

of 2.87 eV. Hence it significantly improves the absolute values of the calculated

band gap compared to those computed by conventional functionals (2.2 eV for

LDA and 1.67 eV for generalized gradient approximations, GGA [69]).

The initial calculations used a slab with 24 1×1 monolayers. Detailed conversion

checks showed that thin slabs consisting of less than 24 MLs do not contain enough

bulk-like material to correctly describe the onset of the current into the bulk

conduction band [62]. Additionally, they cannot provide a dense mesh of bulk

states, as can be seen by comparing the red stars (results of thin slabs) and blue

dots (calculated with thick slabs, see below) in Figure 8.2(a). For this reason, thin

slabs not only underestimate the density of states (DOS) at the energy region of

interest but also fail to correctly describe the decay of the bulk band edge states

into the vacuum [62]. In addition, they also suffer from a charge sloshing [70] along

the slab preventing self-consistency of the electronic charge to be reached. Self-

consistent calculations of thin slabs can be sped up by modifying and extending

the approach originally developed by Engels et al. [71] in the following way: First,

the charge density of a slab consisting of 24 MLs (i.e. ≈ 2.5 nm) is calculated
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8. Ab initio calculations

Figure 8.1. Unrelaxed atomic structure of wurtzite-structure gallium nitride
with an m-plane facing the top of the image. The upper part of the slab
used in the calculations is indicated by red solid lines. The first four of 24
monolayers are visible and are labeled 1,. . . ,4.

self-consistently. Afterward, the slap is opened in the middle and additional 24

bulk like GaN MLs are inserted, yielding a slab with a thickness of 48 MLs (i.e. ≈
5 nm). Second, non self-consistent calculations are performed by keeping the charge

density fixed and using 187 k-points in the irreducible part of the surface Brillouin

zone [62].

The results of this approach are shown in Figure 8.2(a). A comparison of the

calculated red stars and blue dots with the projected bulk band structure (gray

area) shows that this approach describes the bottom of the bulk conduction band

with an accuracy of 0.15 eV1.

1A more detailed analysis of the energetic position and dispersion of the surface state as well as
of the decay of the states into the vacuum showed that this approach describes the dispersion
and the decay with an accuracy better than 0.1 eV or 1%, respectively.
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8.2. Surface states and dispersion

Figure 8.2. (a) Band structure of the relaxed GaN (101̄0) surface along high
symmetry lines of the surface Brillouin zone calculated with a slab consisting
of 48 MLs (blue dots) and 12 MLs (red stars). The solid blue line indicates
the Ga-derived unoccupied surface state (SGa). SN denotes the N-derived
occupied surface state. (b) Density of states of the 48 MLs slab (dotted line).
The red solid curves indicate the DOS arising from the surface states. The
grey shaded areas denote the projected bulk band structure (a) and DOS (b),
respectively. In both cases, the top of the bulk valence band is set to 0 eV and
the bulk conduction band has been rigidly shifted to meet the experimental
band gap of GaN [62]. The high symmetry k points are defined according to
Figure 3.2.

Figure 8.2 shows the calculated band structure (a) and the corresponding density

of states (b). As can be seen, the GaN (101̄0) surface exhibits two noticeable states:

A nitrogen-derived occupied state (SN) at the top of the bulk valence band (EV )

at around 0 eV and a gallium-derived unoccupied s-type state (SGa) 2.4 eV above

EV . The empty gallium-derived surface state is within the fundamental band gap

throughout the whole Brillouin zone and never is resonant with the bulk bands.
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Surprisingly, this surface state apparently is not probed by conventional STM

measurements.

A closer look at the dispersion in Figure 8.2(a) reveals that the energy of the

unoccupied surface state exhibits a steep dependence on the parallel wave vector.

A strong dispersion occurs at the Γ̄ point while an almost flat dispersion can be

observed near the edges of the Brillouin zone. This shape of the dispersion affects

the density of states shown in Figure 8.2(b). The surface state exhibits a long tail

with a low DOS decaying into the fundamental band gap, while the main peak

overlaps with the onset of the bulk conduction band (projected bulk states shown

in gray).

8.3. Decay of the DOS into the vacuum

Due to the fact that a scanning tunneling microscope probes the density of states

far above the surface, the decay of the different states into the vacuum is of great

importance. The extension of the states into the vacuum can be illustrated using

the charge density distribution of two groups of states of different energetic posi-

tions: The energy of the first one is located at the onset of the surface state SGa

(i.e. 2.4 eV above EV ), whereas states of the second group have an energy at the

bulk conduction band edge EC (i.e. 3.4 eV above EV ). The corresponding contour

plots are shown in Figure 8.3. In both cases a localization at the Ga surface atoms

is revealed, since the corresponding lobes extend furthest into the vacuum above

the Ga sites. Surprisingly, the charge density arising from the states at EV +3.4 eV

is much stronger and extends furthest into the vacuum. Hence, a scanning tunnel-

ing microscope will primarily probe states at the bulk conduction band minimum.

The minimum of the surface state has only a very small contribution and hence

is usually not visible in STM measurements. This is a direct consequence of the

aforementioned strong dispersion of the surface state around the Γ̄ point and the

corresponding low tail of the density of states.

Despite having different energetic positions, the forecited two groups of states

exhibit a similar decay into the vacuum, as can be seen in Figure 8.4 showing the

partial charge densities integrated over the (101̄0) plane. However, the states at

the minimum of the bulk conduction band have an intensity more than two orders
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Figure 8.3. Integrated partial charge density along the 〈112̄0〉 direction of the
states at energies of (a) EV +2.4 eV (surface state onset) and (b) EC = EV +
3.4 eV (onset of bulk conduction band)[62]. In both cases, the partial charge
density is the superposition of all states weighted with a Gaussian distribution
with a standard deviation of 25 meV centered at the corresponding energy
value. The same logarithmic z-scale is used in (a) and (b). Thicker contour
lines indicate isolines of the same value in (a) and (b). Open (filled) circles
represent the Ga (N) atoms. As can be seen, the charge density arising from
states at the onset of the bulk conduction band (b) extends further into the
vacuum than the charge density of the surface state minimum (a), resulting
in a preferential detection of states with energies at the minimum of the bulk
conduction band.
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Figure 8.4. Decay of the partial charge density integrated over the (101̄0)
planes arising from the states at the onset of SGa at EV + 2.4 eV (squares)
and those with energies at the bulk conduction band edge EC (circles) [62].
The same Gaussian weighted superposition approach as used in Figure 8.3
has been applied.

of magnitude higher than the intensity of states at the surface state minimum.

Furthermore, the decay of the surface state at different points of the Brillouin

zone, as shown in Figure 8.5, shows that it is decaying slowest at the Γ̄ point. At

the edge of the Brillouin zone the decay is always faster and hence, at the X̄
′

and

M̄ points the DOS is negligible as compared to the DOS at the Γ̄ point. At the

X̄ point, the DOS is still highest until an extrapolated distance of approximately

11 Å from the surface, due to the extremely flat dispersion of the surface state at

the X̄ point.
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8.3. Decay of the DOS into the vacuum

Figure 8.5. Differences in the decay of the surface state for the high sym-
metry k-points of the surface Brillouin zone [62] as defined in Figure 3.2.
The variations in the decay rates influence the strength of the signal when
probing the surface in dependence on the separation of tip and sample. The
topmost nitride surface atom is set to the distance of 0 Å within the calcula-
tions. Positive and negative values of the distance correspond to vacuum and
bulk regions, respectively.

As a result, the tip has to be approached2 toward the surface by approximately

2.4 Å in order to probe equally strong signals for both states while measuring

tunneling spectra, as can be seen by a smaller extent into the vacuum of the

minimum of the surface state in Figure 8.3(a) or by looking at the separation of

the dashed lines in Figure 8.4. According to these results, reducing the tip-sample

separation should enable the detection of the empty SGa surface state.

2Due to Equation 2.9 (I = I0 · e−2κz), approaching the tip increases the tunneling current [64].
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9. Experimental identification of the

surface state

9.1. Modified experiment

As stated in Chapter 8.3 and shown in Figure 8.4, the tip has to be approached

toward the surface in order to increase the sensitivity of the STM and hence be

able to experimentally probe the minimum of the empty surface state SGa. In the

experiment, the tip-sample separation hence has to be reduced. This has been

achieved in two steps: First, the set current was increased from 150 pA to 200 pA

and the set voltage was decreased from +2.8 V to +1.6 V to approach the tip by

approximately 1.37 Å: To be able to determine the difference in tip-sample separa-

tion for these two sets of parameters, the tunneling spectrum measured at +2.8 V

set voltage with constant tip-sample separation during the whole acquisition of

the spectrum needs to be investigated. The tunneling current in this spectrum at

a voltage of +1.6 V is 13 pA as shown in Figure 9.1. Hence, the same tip-sample

separation could be adjusted using a set voltage of +1.6 V and a set current of

13 pA. Since the the tunneling current exponentially depends on the distance be-

tween tip and surface (Equation 2.9)1, an increase in the set current from 13 pA

to 200 pA (as used for the second spectrum) is equivalent to a reduction of the

tip-sample separation ∆z:

1 I = I0 · e−2κz
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9. Experimental identification of the surface state

Figure 9.1. Scanning tunneling spectrum acquired at 77 K, at a tip-sample
separation defined by a setpoint of +2.8 V and 150 pA. A second spectrum
(data not shown) has been measured at a distance resulting from a set voltage
of +1.6 V and a set current of 200 pA. To compare the different tip-sample
separations of the two spectra, the tip-sample separation resulting from the
latter setpoint has to be determined using this spectrum and Equation 9.1. It
follows that the tip is approached by 1.367Å using the setpoint of +1.6 V and
200 pA as compared to +2.8 V and 150 pA.

∆z = − 1

2κ
· ln
(
I

I0

)
(9.1)

= − 1

2κ
· ln
(

200 pA

13 pA

)
(9.2)

≈ −1.367 Å (9.3)

In a second step, the tip-sample separation has been further reduced by a ramp of
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9.1. Modified experiment

Figure 9.2. Relative tip-sample separation for the two spectra shown in Fig-
ures 7.2 (upper line) and 9.3 (lower line). Performing the measurement us-
ing a constant gap voltage (upper line), which is the most common approach,
results in the surface state not being probed. If, however, the tip-sample sep-
aration is modified (lower line) and the tip is hence approached up to 3.37 Å,
the STM becomes more sensitive. Using this ramped tip-sample separation,
the empty surface state SGa can be successfully probed.

up to 2 Å as shown in Figure 9.2 instead of having a constant tip-sample separation.

At the peak of the ramp, the tip is up to 3.37 Å closer to the surface. During the

measurement, the tunneling current was always kept within the dynamic range of

the pre-amplifier [72].
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9. Experimental identification of the surface state

9.2. Experimental results and discussion

Figure 9.3. Normalized differential conductivity spectrum measured at 77 K.
The tip-sample separation z was varied by applying a ramp, as shown in
Figure 9.2. The initial tip-sample separation was defined by a set voltage
of +1.6 V and a set current of 200 pA. At negative voltages, peaks arise
from quantized states SQ confined in the zone of tip-induced band bending.
The peak at approximately +0.25 V indicates the presence of a surface state
roughly 0.6± 0.2 eV below EC.

The normalized conductivity spectrum measured with the reduced tip-sample

separation is shown in Figure 9.3. In contrast to the spectrum shown in Figure 7.2,

a strong signal appears within the fundamental band gap, peaking at voltages

around +0.25 V (Figure 9.3).

In analogy to Figure 7.2, the peaks at negative voltages in Figure 9.3 are caused

by quantized states SQ confined in the zone of tip-induced band bending. Their

voltage is shifted and their voltage separation is increased as compared to the

spectrum at a large tip-sample separation in Figure 7.2. The reduction in the tip-

58



9.2. Experimental results and discussion

sample separation intensifies the band bending and thus increases the confinement

energy in the band bending zone.

The peak at approximately +0.25 V indicates the presence of a surface state

roughly 0.6 ± 0.2 eV below EC (neglecting possible band bending effects)2. This

is in good accordance with the energy position calculated for the minimum of the

empty surface state of between 0.7 eV and 1 eV below EC [59, 60]. Therefore, this

peak is to be assigned to the onset of the surface state SGa at the Γ̄ point. The

absence of features related to the bulk band edge in Figure 9.3 has been shown

to arise from spreading resistance effects in the transport of carriers at small tip-

sample separations [73]. For larger gap voltages, the band edge reappears.

The presence of the surface state in the fundamental band gap results in an

intrinsic pinning of the Fermi energy at n-type GaN (101̄0) cleavage surfaces and

at the analogous nanowire sidewall facets. Usually, the pinning of the Fermi en-

ergy should result in tunneling spectra without tip-induced band bending. In the

present case, however, this is obviously not the case since quantized states from

the zone of tip-induced band bending clearly occur. The reason for this behavior is

the impossibility to fill electrons from the conduction band into the surface state,

since both the surface state and the conduction band minimum have an s-type

orbital character. Due to the transition rule l → l ± 1, the electron transition is

impossible without the participation of a third partner, which considerably reduces

the transition probability. Hence, the occupation of the surface state cannot be

changed sufficiently on n-type GaN and the electric field between the tip and the

surface thus cannot be screened by the surface state resulting in the fact that a

tip-induced band bending occurs as if no surface state was present. This is also

supported by the ability to image doping modulations on the GaN cleavage plane.

In this Part it was shown that while traditional scanning tunneling microscopy

measurements suggest the absence of an empty gallium surface state in the fun-

damental band gap, a decrease in tip-saple separation results in the successful

detection of said surface state according to ab initio calculations. Using this new

approach, the former missing surface state SGa on the gallium nitride m-plane

2Due to the concentration of extrinsic surface defects on freshly cleaved GaN (101̄0) surfaces
being small, only intrinsic surface states can be located at the origin of the measured surface
state within the band gap.
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could successfully be probed with the STM. Its peak is determined to be located

at 0.6±0.2 eV below EC thus being in good accordance with theoretical predictions.
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Part III.

XSTM of v-shaped defects in

gallium nitride
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10. Introduction

For the application of gallium nitride in optoelectronic devices, the bulk material

has to be reasonably free of defects [74]. However, there are hardly any large bulk

substrates available and thus most epitaxial layers have to be deposited on sub-

strates which exhibit a large lattice mismatch as well as a large thermal mismatch

[3], inducing high concentrations of defects in the crystal.

The most prominent and largest features are the so-called inverted pyramidal

pits at the growth surface [61, 75–77]. These micro-scale defects typically exhibit a

v-shaped profile from which they received their name. During progressing growth,

these v-shaped defects are overgrown. However, at present it is unclear how the v-

shaped pits at the growth front will affect the resulting epitaxial material once the

process of overgrowth has taken place [22]. The sparse electrical characterization

of v-shaped defects in pure GaN shows strongly broadened cathodoluminescence

spectra on both the growth surface [78] and at overgrown v-defects [79]. This

indicates a locally increased free electron concentration of the v-shaped defects [78,

79] or at least an optically different zone extending along the c(growth)-direction

[80]. Top-view measurements show an increase in the work function and the leakage

current at v-pits on n-type GaN [81]. However, it is unclear to what degree these

results are affected by the pinning of the Fermi energy at the polar c-plane surface

[82]. Hence, the electronic structure of overgrown v-shaped defects in pure GaN

remains unclear.

In this Part of the thesis, the geometric and electronic structure of overgrown

v-shaped defects in gallium nitride epitaxial layers is investigated by cross-sectional

scanning tunneling microscopy and spectroscopy.

A periodical change in the contrast of the STM images is investigated and a

connection between the shape of the modulated contrast and the contour of the

growth front is established in Chapter 11. This allows to extract irregularities at
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10. Introduction

the growth front after overgrowth using XSTM on cleavage surfaces.

In Chapter 12, overgrown v-shaped defects are identified in XSTM images, using

the results of Chapter 11. The modulation visualizes the geometrical shape of the

inclined growth front at v-shaped defects and the acquisition of scanning tunneling

spectra within the center of the v-shaped defects and far away from the center of

the v-shaped defects reveals information on their electronic characteristics.

The spatial meandering of v-shaped defects on a cross-sectional (101̄0) cleavage

plane of GaN(0001) epitaxial layers grown along the c-direction is investigated in

Chapter 13.
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11. Doping modulation in epitaxial

gallium nitride

In this Chapter, a periodical change in the contrast of the STM images is investi-

gated. A connection between the shape of the modulated contrast and the contour

of the growth front is established, yielding information on large scale features on

the cleavage surface.

11.1. Features on large scale STM images

Scanning tunneling microscopy offers the advantage of a very high resolution.

Hence, the technique usually is employed for the imaging of the atomic structure

of the sample being investigated. Due to a limited bandwidth of the electronics

used to both control the tip as well as to acquire the actual data, the area being

measured is usually rather small. Common STM images thus typically have a

size smaller than 250 nm× 250 nm when atomic resolution is to be achieved, since

a further increase in image size results in a decrease in resolution if the image

acquisition time is to remain reasonable. If, however, atomic resolution is not

a prerequisite, the scanning tunneling microscope can be used to acquire much

larger images, which can enable the observation of different, formerly unidentified

properties and patterns only visible when the sample is studied on a larger scale.

In Figure 11.1, two images larger than 2000 nm× 2000 nm are shown. As can

be seen, there are periodical changes of contrast in both images, running bottom-

left to top-right corner in (a) and left to right in (b). Despite exhibiting visible

differences in the periodicity of the modulation of contrast, both images have been

acquired from the same sample.
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11. Doping modulation in epitaxial gallium nitride

500 nm

(a) 2100 nm×2100 nm, +3.25 V, 128 pA

750 nm

(b) 2700 nm×2700 nm, +2.5 V, 100 pA

Figure 11.1. Two large scale scanning tunneling microscopy images showing
periodical changes in contrast (bottom-left to top-right corner in (a), left to
right in (b)). Despite exhibiting different periodicities in the modulation of
contrast, both images have been acquired from the same sample. The cone
shaped structures running left to right in (b) are actual surface steps and not
part of the modulation of contrast.

A change of contrast covering such a large scale in scanning tunneling microscopy

images usually represents a change in the height of the sample. Yet, as shown in

Figure 11.2, the intensity of the modulation of contrast drastically changes when

altering the gap voltage: Being almost like a step-function at a gap voltage of

+6.0 V, the modulation in contrast becomes more trapezoidal the smaller the gap

voltages applied. An additional substructure of the modulation becomes visible at

+2.5 V. Such an extreme dependence on the gap voltage suggests the modulation

to be of electronic nature rather than being caused by topographical effects [83, 84].

Further evidence for this hypothesis can be drawn from the fact that, contrarily

to the modulation of contrast, the actual surface steps in Figure 11.2 are not

influenced by the change in gap voltage. A detailed analysis of the properties of

the modulation of contrast will be presented within the next section.
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11.1. Features on large scale STM images

1000 nm

(a) +6.0 V

1000 nm

(b) +5.0 V

1000 nm

(c) +4.5 V

1000 nm

(d) +2.5 V

Figure 11.2. STM investigation of the exact same area of the sample at
different gap voltages, showing a dependency of the shape of the modulation
of contrast on the gap voltage. While being almost like a step-function at a gap
voltage of +6.0 V in (a), the modulation contrast becomes more trapezoidal
with decreasing gap voltages. A substructure of the modulation becomes visible
at +2.5 V in (d). There are also many actual surface steps visible propagating
from the left hand to the right hand side of each image. The modulation of
contrast does not appear to be influenced by those steps.
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11. Doping modulation in epitaxial gallium nitride

11.2. Characterization of the modulation

Figure 11.3. Topographical height profile of Fig. 11.1(b). The change in
contrast induces an apparent change in height of approximately 1 Å between
peak and valley.

Figure 11.3 shows the averaged topography of Figure 11.1(b): The change in

contrast induces an apparent change in height of approximately 1 Å between peak

and valley of the height profile.

To determine the origin of the modulation, scanning tunneling spectra were

acquired both on top of the peak of the modulation, appearing as a brighter region,

and in the darker areas which are the valley of the modulation. The spectra of

the bright and dark areas were averaged separately and are shown in Figure 11.4.

The averaged spectra of the dark and bright areas apparently mostly coincide.
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11.3. Discussion of the contrast

11.3. Discussion of the contrast

Figure 11.4. Scanning tunneling spectra measured in bright (circles) and
dark (squares) areas, acquired at +2.5 V and 100 pA.

The modulation induces a strong change in height of the STM images. As men-

tioned above, the differences in height of the dark and bright areas are, however,

very unlikely to be the real geometrical shape of the surface [84]. Furthermore, an

analysis of the actual distribution of surface steps shows that the surface is atom-

ically flat (aside from the surface steps). As a consequence, the different heights

of the dark and bright areas can only result from the tip being further away from

the surface while measuring the bright areas, thus creating a peak in the height

profile in Figure 11.3 [83]. Consequently, the spectra shown in Figure 11.4 have

been acquired at different tip-sample separations and need to be corrected. The

difference in height of peak and valley in Figure 11.3 is approximately 1 Å. Ac-

cording to I = I0 · e−2κz (Equation 2.13), a change in the tip-sample separation

69



11. Doping modulation in epitaxial gallium nitride

Figure 11.5. Corrected scanning tunneling spectra measured in bright (cir-
cles) and dark (squares) areas, acquired at +2.5 V and 100 pA. The onset of
the conduction band of the spectra acquired in the bright areas is shifted as
compared to that of the spectra acquired in dark areas.

of 1 Å reduces the current by a factor of 0.1351. This means, that the current of

the spectra acquired in the bright areas is only 0.135 times the value that would

result from the spectra being acquired at the same tip-sample separation as was

used for the spectra in the dark areas. To compare the spectra, the current of the

spectra acquired in the dark areas thus has been multiplied with a factor of 0.135

to match the tip-sample separation of the spectra acquired in bright areas. The

corrected spectra are shown in Figure 11.5. While the currents of the two spectra

now perfectly match within the region of the valence band, there is a distinct shift

in the onset of the conduction band, resulting in the spectra appearing to have dif-

ferent sized band gaps. This indicates the dark and bright areas having a different

carrier concentration [83, 84], which is supported by the orientation of the mod-

1Using κ ≈ 1/Å
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11.3. Discussion of the contrast

ulation: A doping modulation induced by fluctuations during the growth process

would be perpendicular to the c(growth)-direction, which is the same orientation

as exhibited by the modulation of contrast.

The modulation of contrast is thus caused by a doping modulation induced by

the growth process. It therefore maps the geometrical shape of the growth front

with each period of the modulation reflecting a different time during growth.
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12. Evidence of deep traps in

overgrown v-shaped defects

In this Chapter, overgrown v-shaped defects in epitaxial layers of GaN are in-

vestigated using cross-sectional scanning tunneling microscopy (XSTM) and spec-

troscopy. In order to visualize overgrown v-shaped defects in XSTM images, an

n-type doping modulation, as presented in Chapter 11, is utilized. The modula-

tion is propagating along the c(growth)-direction of the epitaxial GaN layers and

visualizes the geometrical shape of the initial growth front after overgrowth. Such

a doping modulation can easily be probed with XSTM due to the induced slight

potential modulation [76].

Contents of this Chapter have recently been published in [22]: P. H. Weidlich, M.

Schnedler, H. Eisele, U. Strauss, R. E. Dunin-Borkowski, and Ph. Ebert. “Evidence

of deep traps in overgrown v-shaped defects in epitaxial GaN layers”. In: Applied

Physics Letters 103 (2013), 062101.

12.1. Scanning tunneling microscopy observations

A constant-current XSTM image of a typical v-shaped defect exposed on a cross-

sectional GaN (101̄0) cleavage surface is shown in Figure 12.1, where the [0001]

growth direction is toward the top of the image. The cleavage surface exhibits

terraces separated by steps with some of these steps abruptly terminating at dis-

location lines intersecting the cleavage surface [14]. Superimposed on the stepped

surface, a doping modulation can be discerned as dark and bright contrast lines.

Figure 12.2 shows a v-shaped defect with its opening side toward the [0001]

direction (right hand side of the image). The modulation of contrast is marked by

dashed lines and the v-shaped edges are propagating along the growth direction
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12.Evidenceofdeeptraps

500nm

(a)

500nm

(b)

Figure12.1. (a)Constant-currentXSTMimageofatypicalovergrownv-
shapeddefectasexposedatacross-sectionalGaN(10̄10)cleavagesurfacewith
the[0001]growthdirectiontowardthetopoftheimage.Thecirclemarksthe
locationofadislocationintersectingthecleavageplane.(b)Sameimagewith
increasedcontrastaccentuatingthev-shapeofthedefect.

overseveraltensofmicrometers,ultimatelyreachingthefinalgrowthsurface.Be-

causeoftheperiodicityofthemodulation,thecontrastlinesmapthelinedirection

ofthecoreofthisv-shapeddefectalongthegrowthdirection.

Themainstructuralpropertyofthev-defectisitsopeningangle.Theaccuracy

ofameasurementofthisanglestronglydependsontheaccuracyofthescanning

geometryoftheXSTMimageacquired. AspresentedinChapter4,thenon-

lineardistortionsofallscanningtunnelingimagesusedinthisstudyhavebeen

corrected. Thecorrectionallowstodeterminetheaverageangleofallv-shaped

defectsobservedtobe104➦±5➦.SinceXSTMimagesacross-sectionofthesam-

ple,theopeningangleofthev-shapeddefectismostlikelytheprojectedopening

angleofathree-dimensionalobject,projectedontoanm-planecross-section.The

wurtzitecrystalstructurecanbecleavedonthreeequivalent{10̄10}(m-)planes1.

Toextractthethree-dimensionalstructureofthev-shapeddefect,allthreepossi-

blem-planeshavebeencleavedandimaged.Inthismatter,theprojectedopening

anglecouldbedeterminedforthreedifferent{10̄10}surfaces,eachrotatedby

60➦inrelationtotheothertwoplanes. Theexperimentsshowedthatallthree

1SeeChapter3.
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12.2. Determination of the geometric structure

1000 nm

Figure 12.2. Constant-current XSTM image of a cleaved GaN (101̄0) sur-
face showing a cross-section through a v-shaped defect. The dashed lines
indicate the doping modulation. The surface exhibits many cleavage steps
running preferentially horizontally and forming narrow cone shaped terraces,
superimposed on the contrast of the doping modulation. The image shows the
density of empty states acquired at a gap voltage of +4.0 V and a set current
of 100 pA.

projections have the same opening angle of approximately 104°.

12.2. Determination of the geometric structure

The observation of stacking and a same opening angle for all m cleavage planes

indicates that the overgrown v-shaped defect is orientated along the growth direc-

tion and originates from an inverted pyramidal three-dimensional pit structure at

the growth surface. In previous investigations inverted hexagonal or dodecagonal

pyramids were found having {101̄1} [61, 75–80, 82, 85–93] or {112̄2} [94] facets

or both [95, 96], depending on the growth conditions. Figure 12.3 shows the two

possible hexagonal pyramidal structures consisting of only {112̄l} or only {101̄k}
planes, respectively, with (k, l > 0).

To enable the determination of the type of these semi-polar facets present in

the XSTM images, the shape of the measured opening angle is compared to the

shape resulting from the geometry of the two possible hexagonal pyramids, as

shown in Figure 12.4. An inverted hexagonal pyramid consisting of {112̄l} facets
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12. Evidence of deep traps

N

Ga

[0001]
[1010]

[1210]

{1122} {1011}

Figure 12.3. Possible hexagonal pyramidal structures in wurtzite GaN:
Hexagonal pyramids can consist of only {112̄l} (dashed lines) or only {101̄k}
(dotted lines) planes, with (k, l > 0).

exhibits a v-shape in an m-plane cross section (Figure 12.4(c)), whereas pyramids

consisting of {101̄k} planes have a cross section with a flat bottom in the m-plane

(Figure 12.4(f)). Without exception, every v-shaped defect imaged had a v-shaped

bottom. Accordingly, the inverted pyramids must consist of {112̄l} facets.

To determine the inclination, described by l, of the {112̄l} facets, the opening

angle is used. This angle of 104° agrees well with l = 2, for which an opening angle

of 101.8° can be derived. If such a v-shaped defect is cleaved exactly through its

center, the opening angle is reduced to 63.2°. Due to the large size of the v-shaped

defects, however, it is much more likely to observe an off-center cleavage, where the

opening angle on an m-plane cross section is 101.8°. Thus, the facets overgrown in

these GaN epitaxial layers were {112̄2} planes, which form the side facets of the

inverted hexagonal pyramids as shown schematically in Figure 12.4(a).

76



12.2. Determination of the geometric structure

Figure 12.4. Schematics of the three-dimensional structures of two possible
hexagonal inverted pyramidal pits on a wurtzite GaN c-plane (a,d), top views
(b,e), and cross sections at the m-plane (c,f). (a-c) and (d-f) show a pit
with {112̄2} and {101̄1} facets, respectively, exhibiting a v-shaped profile or
a profile with a flat bottom on the m-plane, respectively.
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12. Evidence of deep traps

12.3. Scanning tunneling spectroscopy on v-shaped

defects

1000 nm

Figure 12.5. Cross-sectional STM image. Oscillations of the tunneling cur-
rent arise close to the center of the v-shaped defect (stacked horizontally in
[0001] direction in the center of the image). The region with oscillations
typically is 1 to 3 µm wide and extends along the c-direction.

There is no visible difference between the center and the areas far away from the

v-defects in the XSTM image shown in Figure 12.2. In other areas of the sample,

however, the tunneling current is unstable near the cross-sectioned centers of the v-

defects. This tunneling behavior results in oscillations in the XSTM image as seen

in Figure 12.5. The region with oscillations is typically 1 to 3 µm wide and extends

along the c-direction. These oscillations result in a collapse of the tunneling current

and are visible for positive gap voltages only, as can be seen from Figure 12.6. In

Figure 12.6(a) which was measured at +4.0 V, the oscillations are clearly visible

within proximity to the center of the v-shaped pit. At -4.0 V as shown in (b),

however, no oscillations can be observed. This voltage dependence indicates that

v-shaped defects lancing through the sample might affect the electronic properties

of the GaN epitaxial layers.

With the purpose of investigating possible electronic effects, scanning tunneling

spectra were measured at the center of the cross-section of v-shaped defects and in
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2000 nm

(a) +4.0 V

2000 nm

(b) -4.0 V

Figure 12.6. (a) Cross-sectional STM image measured at +4.0 V. Oscilla-
tions of the tunneling current arise close to the center of the v-shaped defect
if positive gap voltages are applied. (b) Same area of the sample measured at
-4.0 V. At negative gap voltages, the oscillations do not occur.

areas far away from the defects. Averaged spectra of both locations are shown in

Figure 12.7. The spectra far away from the defects show an onset of the tunneling

current at -1.8 V for negative gap voltages and an onset at +1.8 V for positive gap

voltages. In contrast, spectra measured at the center of the v-defects exhibit a

slightly smaller onset voltage at negative voltages, but a much larger onset voltage

for the tunneling current for positive gap voltages of approximately +4.0 V. Hence,

tunneling is significantly more difficult at positive voltages.

12.4. Discussion of the electronic properties

To ascertain the origin of the different electronic properties within the v-shaped

defect, simulations of the tunneling spectra were performed using the theoretical

model as introduced by Bono and Good [97] as well as the software of R. M.

Feenstra based on this model [98–104]. Since a highly stepped n-type GaN surface

was observed, it is assumed that the defect states, e.g. at step edges, pin the

Fermi energy. Using a band gap of 3.39 eV, the calculation yields results that
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12. Evidence of deep traps

Figure 12.7. Tunneling spectra measured at the center of a cross-sectioned
v-shaped defect (black circles) and far away from the v-shaped defect (blue
squares). The large apparent band gap of the tunneling spectrum measured at
the v-shaped defect indicates a suppression of tunneling current for positive
voltages due to deep traps. The dashed line is a calculated spectrum with an
assumed pinning by surface defect states using the theory presented by Bono
and Good [97]. The results of the simulation are in good accordance with the
spectrum acquired in the bulk region far away from the center of the v-shaped
defect.

are in good accordance with the tunneling spectra measured far away from the

v-shaped defect, as can be seen from the dashed line in Figure 12.7. For positive

gap voltages, the current arises from electrons injected into the conduction band

while for negative gap voltages, the current is caused by electrons being extracted

from the valence band states [76]. This is in good agreement with typical tunneling

spectra measured on pinned m-plane cleavage surfaces of n-type GaN [58, 61]. In

contrast, the tunneling spectra measured in the vicinity of the center of the v-
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shaped defect cannot be simulated using a reasonable low carrier concentration or

any realistic material parameter as the apparent band gap widens strongly despite

the assumed pinning. This indicates the carrier dynamics2 within the GaN sample

inhibiting an efficient injection of electrons [105], suggesting the presence of deep

electron traps at the center of the v-defect. The electrons get caught in the deep

trap and the surrounding GaN area experiences a charge-up, inhibiting further

electron tunneling. These deep traps cannot be emptied, since the concentration of

holes in the valence band (minority carriers) is far too low. However, the presence

of the deep traps does not affect the hole conductivity and thus does not influence

the process of extracting electrons from the valence band at negative voltages.

Hence, based on this theory, a normal conductivity can be observed at negative

voltages only, which is in excellent agreement with the experimental observations.

At positive voltages large enough for a tunneling current to be observed, hot

carriers with energies significantly higher than the energy of the conduction band

edge (& 2.5 eV) are injected. Hot electrons require longer times for thermalization

during which they are able to migrate over long distances. They are thus able to

leave the zone which is trapping thermalized carriers.

Another factor important for the electronic properties of the sample is the spatial

distribution of the deep traps. The fraction of v-shaped defects containing deep

traps (and hence exhibiting an unstable tunneling current) is found to be approx-

imately one third of the investigated length along the c direction. The transition

between sections with stable tunneling current and sections without tunneling cur-

rent, i.e. those areas with oscillations, occurs along the same v-shaped defects. At

the same time, there is no evidence of the cross-sectional cleavage plane being sig-

nificantly (&3 µm) shifted with respect to the center of the v-shaped defect. The

local absence of the tunneling current at positive voltages hence suggests the deep

traps being distributed inhomogeneously along the line direction of the v-shaped

defects. They are, however, always located close to the center of the cross-sectioned

v-defect. Since the samples were cleaved macroscopically, the cleavage surface sta-

tistically is off-center with respect to the actual center of the v-defect. The obser-

vation of an inhomogeneous distribution of deep traps along the v-shaped defects

hence may also be arising from fluctuating radial extensions of the distribution of

2This phenomenon has not been included in the calculations.
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12. Evidence of deep traps

deep traps along the v-shaped defects. These inhomogeneous electronic proper-

ties of the v-shaped defects may explain the diverging reports about the electrical

properties of v-shaped defects [77–82, 85, 86, 106].

In conclusion, v-shaped defects were found to be present in the samples. They

are inverted hexagonal pyramids consisting of {112̄2} side facets. Some of these

v-shaped defects contain deep traps located close to their center, resulting in an

unstable tunneling current. The deep traps are, however, distributed inhomoge-

neously along the line direction of the v-shaped defects.
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13. Meandering of v-shaped defects

In this Chapter, the spatial meandering of v-shaped defects on a cross-sectional

(101̄0) cleavage plane of GaN(0001) epitaxial layers (grown along the c-direction)

is investigated using scanning tunneling microscopy.

13.1. Experimental observations

Figure 13.1 shows a constant-current XSTM image of a typical overgrown v-shaped

defect exposed at a cross-sectional GaN (101̄0) cleavage surface. The [0001] growth

direction is toward the right hand side of the image. Hence, the layers at the

left hand side of the image were grown first and the location of the apex of the

v-shaped dashed lines yields the position of the v-shaped corners as a function

of the progressing growth. The average position of the apexes of the v-shaped

lines form a line extending along the growth direction as indicated by a dashed

horizontal line in Figure 13.1. The apexes of some of the dashed v-shaped lines,

however, are displaced with regard to the average position of the apexes, with

a displacement along the [12̄10] direction labeled δ1, δ2 and δ3. These lateral

displacements were observed to have values of up to 0.5 µm. Despite the existence

of those lateral displacements, the angle between the cross sectioned inclined facets

of the v-shaped defects and the average position of the apexes is not changed. The

geometrical shape1 of the v-shaped defects is hence not changed by the lateral

displacements. Accordingly, the lateral displacements of apexes are caused by

spatial shifts of the center of the v-shaped defects at the growth surface.

1A pyramidal shape delimited by six {112̄2} planes with an opening angle on the cross-sectional
m-plane of α = 101.8°, see Chapter 12 and [22].
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13.2. Quantification of the meandering

13.2. Quantification of the meandering

To quantify the spatial shifts of the v-shaped defects, the lateral displacement

of the apex was measured for every doping modulation period. For this purpose,

several v-shaped defects were analyzed. A schematic representation of the displace-

ment of a v-shaped defect is shown in Figure 13.2; The length of one period of the

modulation is xmod. Without crossing the arm of the i-th “v”, the (i+1)-th “v” can

be laterally displaced up to a maximal length δmax given by δmax = tan(α/2) ·xmod

with α being the opening angle of the “v”’s. The actual displacement of “vi” in

relation to the position of the mean of all apexes parallel to the c-axis (gray solid

line) is labeled δi.

xmod

δmax

δi

A
v
e
r
a
g

e
 p

o
s
it

io
n

o
f 

a
p

e
x
e
s

α

Figure 13.2. Schematics of meandering: The length of one period of the
modulation is xmod. Without crossing the arm of the i-th “v”, the (i+1)-th “v”
can be displaced laterally up to a length δmax given by δmax = tan(α/2) · xmod

with α being the opening angle of the “v”’s. The actual displacement of “vi”
in relation to the position of the mean of all apexes parallel to the c-axis (gray
solid line) is labeled δi.
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13. Meandering of v-shaped defects

Figure 13.3. Frequency distribution of the lateral displacements δ from the
average position of the meandering v-shaped defects along the [12̄10] direction
in units of the maximal lateral displacement δmax ≈ 1.2 µm. The distribution
is centered along the c-direction (equal to displacement 0), but exhibits a large
width.

The resulting distribution of the lateral displacements δ from the average position

along the [12̄10] direction is shown in Figure 13.3. The lateral displacement is

measured in units of the maximal lateral displacement of the cross-sectioned v-

shaped defect

δmax = xmod × tan

(
101.8

2

)
≈ 1.2 µm (13.1)

with xmod ≈ 1 µm. The distribution is symmetrical and centered around a lateral

displacement δ = 0. Therefore, the overgrown v-shaped defects on average prop-

agate along the growth direction. The width of the distribution of 0.27× δmax,

however, shows a significant meandering perpendicular to the growth direction.

Figure 13.4 shows the frequency distribution of jumps ∆i = δi− δi−1 in the lateral
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13.3. Determination of the origin of the meandering

Figure 13.4. Frequency distribution of the jumps in lateral displacement
∆i = δi − δi−1 within one period. Jumps in lateral displacements of up to
0.5 µm occur.

displacement between one period and another. As can be seen, jumps of up to

0.5 µm occur within one period. Assuming that the line of the apex constantly

bends over the whole modulation period rather than suddenly kinks, the bending

angle in the (101̄0) projection would be in the order of 26°.

13.3. Determination of the origin of the meandering

In an ideal, dislocation-free GaN material no strain field is present and hence a

v-shaped defect should not undergo any lateral displacements with progressing

growth. The spatial position would then only be determined by the growth speeds

on the different facets. Since in theory, the six delimiting {112̄2} facets have equal

growth speeds, the inverted pyramidal pit at the growth surface should either
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13. Meandering of v-shaped defects

deepen or flatten out, depending on the relative growth speed along the c-direction.

For GaN grown with hydride vapor phase epitaxy, however, inverted pyramidal

v-shaped pits are known to form around growth instabilities, such as impurities,

droplets, and/or defects [96, 107]. As a consequence, strain fields are induced which

in turn can be expected to act as nucleation centers for threading dislocations

around which the v-shaped defects form. The material hence cannot be considered

to be free of strain. The v-shaped defect is overgrown during processing growth and

its apex follows the intersection point of the dislocation at the growth surface at

any time. Therefore, the directions of the dislocation lines are of great importance.

In general, there are three different types of threading dislocations in GaN epi-

taxial layers: First, pure edge dislocations with an a
3
〈112̄0〉-type Burgers vectors

are usually bent toward the non-polar directions [25, 37, 108–110] since their low-

est energy state is for a 90° bending, where they become pure screw dislocations.

Second, dislocations with an a
3
〈112

(
±3c

a

)
〉 Burgers vector, i.e. components along

the a- and c-direction, have a significantly lower concentration [16, 111, 112] due

to the higher energy related to the longer Burgers vector [113]. The third type

of threading dislocations are pure screw type dislocations with a Burgers vector

of ±c[0001]. Their energy is lowest with a line direction along the c-direction

[114]. Hence, they are likely to propagate through the entire epitaxial layer dur-

ing overgrowth, eventually intersecting the growth surface [115]. The latter kind of

dislocation can be expected to be dominating at the center of the v-shaped defects.

Although screw dislocations with a ±c[0001] Burgers vector ought have a line

direction parallel to the Burgers vector, their line orientation may deviate from

this preferred c-direction. The screw dislocations will interact with strain fields

in the material. As stated in Chapter 15 and [37], dislocations are found to form

agglomerations in GaN epitaxial layers, resulting in a fluctuation in the magnitude

and orientation of the surrounding strain fields as well as the degree of interaction

between the dislocations, which then induces a meandering of the screw disloca-

tions. If the line energy of the dislocation is negligibly small, the dislocation will

meander through the material along a line with minimal energy of strain interac-

tion. In case of an orientation dependent line energy of the dislocation, the line will

be bent to towards the preferred line direction to a certain amount, thus reducing

the meandering.
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13.3. Determination of the origin of the meandering

The meandering introduced by the strain interaction of the screw dislocation

induces spatial shifts of the intersection point of the dislocations at the growth

surface. The apex of the inverted pyramidal pit at the growth surface consequently

follows these spatial shifts. On that account, the apex of the overgrown v-shaped

defect meanders with progressing growth, tracing the meandering dislocation. The

pronounced meandering of the v-shaped defects proposes the dislocation also ex-

hibiting a strong meandering, significantly bending the line direction. The spatial

offsets of the apexes presented in Figure 13.4 show that bending angles of the order

of 26° can be reached.

In conclusion, the apexes of the overgrown v-shaped defects are found to mean-

der with progressing growth. The meandering is traced to a wriggly dislocation

line at the core of each v-shaped defect.
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Part IV.

Characterization of dislocations and

their interactions
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14. Introduction

The efficacy of devices based on GaN is currently limited by the quality of the bulk

crystal material. Since there are hardly any large bulk substrates available [4], al-

most all GaN films are grown on substrates exhibiting a large lattice mismatch

as well as a large thermal mismatch using heteroepitaxy or they are deposited on

pseudo substrates which themselves were nucleated on mismatched substrates [3].

The mismatch induces high concentrations of defects, of which in particular dislo-

cations negatively affect the properties of the device.

To improve the quality of GaN substrates, the high concentrations of disloca-

tions have to be reduced [23]. A large variety of methods targeting the reduction

of defects in GaN have been developed recently with the aim of interrupting the

propagation of dislocations along the growth direction by bending their line direc-

tion. Crucial factors for the optimization of the reduction of dislocations are the

interaction between dislocations themselves, between dislocations and the growth

front as well as between dislocations and other defects. Unfortunately, rather little

is known about interactions of dislocations in GaN epitaxial layers [34–37].

Hence, a detailed investigation of interactions between dislocations and v-shaped

defects as well as between dislocations themselves is presented in Chapter 15. The

investigation is performed by mapping the spatial distribution of dislocations as

well as their projected line directions on a cross-sectional GaN (101̄0) cleavage

plane of GaN (0001) epitaxial layers using scanning tunneling microscopy.

In Chapter 16, a methodology for the determination of the intersection angle

of a dislocation line is presented. Combined with the projected line direction

of the dislocation, the entire three dimensional angle of intersection between the

dislocation line and the cleavage surface can be determined.
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15. Repulsive interactions between

dislocations and overgrown

v-shaped defects

Interactions between dislocations and v-shaped defects are investigated within this

Chapter. The investigation is performed by mapping the spatial distribution of dis-

locations as well as their projected line directions on a cross-sectional GaN (101̄0)

cleavage plane of GaN (0001) epitaxial layers using scanning tunneling microscopy.

Contents of this Chapter have recently been published in [37]: P. H. Weidlich,

M. Schnedler, H. Eisele, R. E. Dunin-Borkowski, and Ph. Ebert. “Repulsive in-

teractions between dislocations and overgrown v-shaped defects in epitaxial GaN

layers”. In: Applied Physics Letters 103 (2013), 142105.

15.1. Experimental observations

Simultaneous mapping of the positions and line directions of dislocations is a rather

difficult task thus far. The concentration of dislocations on surfaces can be mapped

routinely by techniques like atomic force microscopy and etch point counts [107,

109, 116, 117]. However, these methods do not allow for the mapping of the line

direction. Transmission electron microscopy allows a determination of the Burgers

vector and line direction of dislocations as well as their concentration, but large

scale mapping of several micrometers still remains a challenge.

In contrast, scanning tunneling microscopy allows a simultaneous determination

of the Burgers vector and projected line direction of dislocations as well as a

mapping of the concentration of dislocations over large areas of view [14]. To map
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15. Repulsive interactions of dislocations

the positions of dislocations relative to the position of v-shaped defects, the n-type

doping modulation presented in Chapter 11 is utilized.

Figure 15.1 shows a large scale overview mosaic consisting of three constant-

current XSTM images, all of which have been enhanced by removing the non-

linear distortion using the technique presented in Chapter 4. The [0001] growth

direction is toward the top side of the image. As can be seen, the cleavage sur-

face exhibits a number of terraces which are primarily separated by steps with a

height of one monolayer. Some steps abruptly terminate at dislocations which are

intersecting the cleavage surface [14]: These points are marked by dashed circles in

Figure 15.1. Superimposed, the periodical contrast change arising from the doping

modulation can be discerned as dark lines. The orientation of the doping modula-

tion exhibits two sharp v-shaped cross-sections marked by v-shaped dashed lines

which are extending along the growth direction. Two dashed vertical lines trace

the growth direction. As shown in Chapter 12 and in Reference [22], v-shaped

edges in these GaN epitaxial layers arise from overgrown v-shaped defects with six

inclined {112̄2} growth facets.

Each dislocation observed in Figure 15.1 induces a step with the height of one

monolayer into the GaN (101̄0) cleavage surface. This type of step corresponds to

a Burgers vector of the type ±a
3
[112̄0] or ±a

3
[2̄110], each of which is tilted by 30°

with respect to the surface normal [14]. In general, a scanning tunneling image

would also be compatible with “mixed” dislocations, such with an a+c Burgers

vector, but their concentration is significantly lower [16, 111, 112] due to the higher

energy related to the longer Burgers vector [113]. Dislocations with Burgers vectors

lying fully within the surface plane, for example along the c direction, cannot be

observed in such a large scale image due to the lack of lateral atomic resolution.

Hence, only dislocations with a
3
〈112̄0〉 Burgers vectors are observed.

Dislocations with such a Burgers vector are initially a
3
〈112̄0〉-type threading

edge dislocations with a line direction parallel to the [0001] direction. They never

intersect with the cleavage plane and would thus be invisible. As a consequence,

the lines of all dislocations observed on the cleavage surface have been bent away

from the [0001] direction. These dislocations therefore switched from a pure edge

type to a mixed type.1

1A more detailed analysis of the line direction will be performed in Chapter 16.
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15. Repulsive interactions of dislocations

15.2. Distribution of the dislocations

The STM image presented in Figure 15.1 also contains information on the spatial

distribution of dislocations with respect to v-shaped defects. Each dislocation is

marked by a dashed circle. The corresponding derived local density of dislocations

is shown in Figure 15.2(c) and exhibits strong fluctuations. Two effects stand out:

First, the average concentration2 of dislocations shown in Figure 15.2(c) changes

by almost one order of magnitude along the [12̄10] direction and reaches its maxi-

mum of about 5×107 cm−2 for dislocations located in the area between the v-shaped

defects. The minima occur at the centers of the v-shaped defects, whose positions

are indicated by the dashed lines.

Second, the distribution of dislocations within the region of high densities ex-

hibits striking inhomogeneities along the growth direction. The dislocations form

agglomerations with dimensions of 3 − 5 µm that are each consisting of 10 to 20

dislocations. The concentration in these agglomerations reaches values of up to

1×108 cm−2. In areas with a low density of dislocations, only individual dislocations

are observed.

For an understanding of the formation of these agglomerations, the line direc-

tions of the dislocations might provide an insight. Initially, their line directions

run parallel to the [0001] growth direction, but with progressing growth they may

bend toward non-polar directions. Since only dislocations intersecting the (101̄0)

cleavage plane could be probed during the measurements, their lines have bent.

The line direction can be further quantified using the displacement field visible in

the STM images [14]. The displacement field of a dislocation has its maximum at

the core of a dislocation and decays with increasing distance from the core3. If a

dislocation line intersects the surface with a large angle with respect to the normal

direction, the displacement field of the subsurface dislocation distorts the surface

anisotropically. This can be seen in Figure 15.3 where the derivative of a detail

from Figure 15.1 is shown. The displacement field extends anisotropically down-

ward, tracing the line direction. The diagonal contrast lines arise from steps and

2The values of the concentrations only take into account dislocations with a
3 〈112̄0〉-type Burgers

vectors sticking out of or into the cleavage plane. The third a
3 〈112̄0〉-type Burgers vector is

lying parallel to the cleavage plane and hence is invisible in the STM images. Assuming an
equal distribution of all Burgers vectors, the actual concentration is likely 50% higher.
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15. Repulsive interactions of dislocations

1

2

[0
0
0
1
]

1000 nm

Figure 15.3. Derivative (−dz/dx) image of a 2.85µm × 2.85µm detail from
Figure 15.1. The straight black and white lines arise from the steps. The two
dislocations exhibit a displacement field rotated by about 10° relative to the
[0001] direction.

are not of interest. Dislocations intersecting the surface perpendicularly, however,

yield a spherical displacement field.3

Using this analysis, the projected line direction of every single dislocation in

relation to the [0001] direction was determined. The line directions are shown in

Figure 15.4(b), where the angle of each dislocation is plotted as color-coded cir-

cle at the position of the dislocation intersecting the cross-sectional surface using

the same image as in Figure 15.1. Open circles represent dislocations with line

directions normal to the surface (no detectable projected component). Figure 15.5

shows the frequency distribution of the projected line directions of the dislocations.

In this analysis, the projected line directions in [12̄1l] and [1̄21̄l̄] directions are con-

sidered to be identical since the orientation of the dislocation line is arbitrary. The

minimum at 0°, representing dislocation lines with a projected orientation along

the c direction, indicates that most dislocations are bent, with large bending angles

(>30°) apparently being preferred. Dislocations without a projected component of

the line direction (not included in Figure 15.5), have a line direction perpendicular

to the cross-sectional surface, i.e. they also have a large bending angle with respect

to the [0001] direction. Figure 15.4(c) shows the average local projected line direc-

3Further analysis of the displacement fields of dislocations intersecting a surface is presented in
Chapter 16.
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15. Repulsive interactions of dislocations

tions. The large areas of same colors indicate agglomerations of dislocations with

similar projected line directions, suggesting the presence of bundles of dislocations

with mostly parallel line orientations.

15.3. Discussion

The statistical analysis above shows that the dislocation lines are bent toward the

non-polar directions. Calculations yield the lowest energy state for a 90° bending

resulting in a pure screw dislocation [114]. Local energy minima also exist for

45° bending angles. It can be expected that the bending results in an identical

reduction of the energy of all dislocations with a
3
〈112̄0〉 Burgers vectors. Hence,

dislocations with the same Burgers vector should be bent similarly, leading to

bundles of parallel dislocation lines. Neighboring parallel dislocations with the

same Burgers vector or with one rotated by 60° feel repulsive forces induced by the

strain field. At equilibrium, this repulsive interaction would lead to a homogeneous

distribution of the dislocations with maximized separations. Since this is not

observed within the scope of the measurements, additional attractive forces have to

be present. As stated in Reference [118], a similar problem occurred for repulsively

screened Coulomb interactions between charged dopants in GaAs, which were also

found to form agglomerations. Many-body effects in the repulsive interactions lead

to effectively attractive pair interaction potentials, which induce agglomerations.

Since strain interactions have a large range of interaction caused by their slow

decay [119], many dislocations will interact simultaneously. These many-body

effects in the strain interactions may induce an effective attractive force to the

interactions between the dislocations cores which would otherwise be dominated

by repulsive strain interactions. Ultimately, these effects lead to inhomogeneities

in the distribution of dislocations which are in agreement with the agglomerations4

of dislocations observed in Figure 15.2(b).

In addition to interactions between the dislocations themselves, there might also

be interactions between dislocations and v-shaped defects. The distribution of

dislocations shown in Figure 15.2(b) peaks for dislocations located in between the

4Some of the agglomerations consist of two intersecting bundles of dislocations with different
line directions as can be seen by comparing Figures 15.2(b) and 15.4(c).
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15.3. Discussion

Figure 15.5. Distribution of the orientation of the projected line directions of
the dislocations relative to the [0001] c-direction at 0°. Nearly all dislocations
are bent away from the c direction.

v-shaped defects. The lowest concentration of dislocations in that cross-section is

found in areas right at the core of the v-shaped defects. This is corroborated by the

reduced dislocation density at v-shaped defects found on c-oriented growth planes

[107]. These observations indicate a repulsive interaction between v-shaped defects

and dislocations which bends the dislocations away from the v-shaped defect.

Previously, dislocations were found to bend toward inclined semipolar facets,

i.e. the opposite direction than observed here [25, 26, 108, 110, 120, 121]. This

effect can be traced to different strain structures: v-shaped defects in hydride

vapor phase epitaxy grown GaN typically form around defect-induced growth in-

stabilities [29, 96, 107], which introduce strain fields. For example, the presence of

dislocations in these v-shaped defects is also indicated by their meandering behav-

ior (Chapter 13). These dislocations induce strain effects. In contrast, wings in
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epitaxial lateral overgrowth (ELO) are mostly free of defects and dislocations and

their corresponding strain fields. In epitaxial lateral overgrowth, the minimization

of the line length hence bends the dislocations lines toward the inclined facet. The

strain fields in v-shaped defects, however, interact repulsively with the strain field

of the surrounding dislocations and bend them away from inclined facets.

In conclusion, the spatial distribution and line directions of dislocations inter-

secting a cross-sectional cleavage surface were mapped. The correlation of the

dislocation distribution and line directions with the spatial positions of v-shaped

defects shows that the dislocations are bent away from the inclined semipolar

facets of the v-shaped defects. The repulsive interaction between dislocations and

v-shaped defects is traced to strain fields within the crystal lattice.
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16. Analysis of dislocations

In this Chapter, a methodology for the determination of the intersection angle of

a dislocation line is presented.

16.1. Determination of the intersection angle of the

dislocation line

Within cross-sectional scanning tunneling microscopy, dislocations intersecting the

surface can be identified by distinctive changes in contrast. The schematics of the

imperfections in the crystal lattice caused by an edge dislocation are shown in

Figure 16.1. The dislocation line is perpendicular to the shown two-dimensional

plane. To generate the dislocation, two half-planes have been inserted in +y-

direction, forming a (positive) line dislocation. The insertion of atomic half-planes

locally disrupts the symmetry of the crystal lattice and hence exerts strain onto the

crystal [123]. Koehler presented a formalism to quantify the strain [122]. This for-

malism is used to derive the effects of strain on surfaces imaged by STM. Following

Koehler1, an Airy stress function, χ, must satisfy the differential equation

∂4χ

∂x4
+ 2 · ∂4χ

∂x2∂y2
+
∂4χ

∂y4
= 0 (16.1)

1The derivation of Equation 16.11 is made in analogy to [122].
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x

y

slip plane

Figure 16.1. Edge dislocation in a simple cubic crystal according to
Koehler [122]. The dislocation line is perpendicular to the two-dimensional
plane shown. To generate the dislocation, two half-planes have been inserted
in +y-direction (see arrows), forming a (positive) line dislocation.

and must yield stresses or displacements which satisfy the boundary conditions of

the problem. The corresponding stresses are:

σx =
∂2χ

∂y2
(16.2)

σy =
∂2χ

∂x2
(16.3)

τxy = − ∂2χ

∂x∂y
(16.4)

An applicable stress function is2:

χ = −Bxy −Dy · log(x2 + y2)
1
2 (16.5)

2For a derivation see Reference [123].
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with the resulting stresses being:

σx = −Dy · 3x2 + y2

(x2 + y2)2
(16.6)

σy = +Dy · x2 − y2

(x2 + y2)2
(16.7)

τxy = +B +Dx · x2 − y2

(x2 + y2)2
(16.8)

Using Hooke’s law, the resulting displacements are:

u = +
m− 1

m ·G
·D · arctan

(y
x

)
+

D

2G
· x · y
x2 + y2

(16.9)

v = −m− 2

2m ·G
·D · log(x2 + y2)

1
2 − D

2G
· x2

x2 + y2
(16.10)

where u and v are the displacements in x direction and y direction, respectively.

G is the shear modulus of the material and m = 1
ν

is the reciprocal Poisson’s ratio.

Introducing the displacement λ (introduced by the Burgers vector), Equation 16.9

can be transformed into:

u =
λ

2π
·
(

arctan
(y
x

)
+

1

2(1− ν)
· x · y
x2 + y2

)
(16.11)

with

D =
m ·G · λ

2π(m− 1)
(16.12)

Figure 16.2 shows a dislocation intersecting the cleavage surface. The dislocation

is marked by a dashed circle and the point of intersection is located at the center

of this circle. As shown in Chapter 15, the projected line direction of such a

dislocation can be measured by evaluating a derivative image of the dislocation.

Yet, only the projected line direction is obtained using this method. In order to

acquire information on the intersection angle of the dislocation line, Equation 16.11

will be utilized: When a dislocation line comes into close proximity to the cleavage

surface (e.g. a coordinate close to the point of intersection), the surface material

above the dislocation line will be deformed according to Equation 16.11. This
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1
2
3
4
5
6

500 nm

Figure 16.2. STM image of a dislocation intersecting the GaN cleavage sur-
face. The dislocation is marked by a dashed circle and the point of intersec-
tion is located at the center of the circle. Line profiles perpendicular to the
projected line direction of the dislocation have been measured, as depicted in
the inset.

deformation can be seen by the contrast gradient in Figure 16.2: The contrast

changes from darker to brighter (clockwise) in the lower right part of the circle.

The change in contrast is caused by a change in height of the surface induced by

the intersecting dislocation line.

For a quantitative analysis, only the edge part of the dislocation resulting in

the displacement perpendicular to the surface is considered. An averaged line

profile of the height along a straight line between the two arrows in Figure 16.2

perpendicular to the projected line direction is shown in Figure 16.3. The result of

the application of Equation 16.11 onto the line profile in Figure 16.3 demonstrates

that the Burgers vector of the investigated dislocation has a z-component of one

monolayer. With the aim of determining the intersection angle of the dislocation

line, n equidistant averaged line profiles are measured, each of them3 covering the

3See inset of Figure 16.2, with each line representing an averaged profile covering the lateral
distance of 1/6 of the distance between the center of the dashed circle and its border.
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16.1. Determination of the intersection angle of the dislocation line

Figure 16.3. Averaged line profile of the dislocation shown in Figure 16.2.
The solid line is a fit of the formula in Equation 16.11 to the data (circles).
The fit shows a good accordance with the data and yields a mean depth of the
dislocation core of about 9 nm.

same lateral distance of the projected line direction (see inset in Figure 16.2). The

averaged equidistant line profiles for the dislocation shown in Figure 16.2 with

n = 6 are presented in Figure 16.4.

The line profiles have different arbitrary y-offsets due to a slight gradient in

the STM image (non plane parallel sample). These offsets are on the one hand

compensated by the fitting algorithm and on the other hand enable a more facile

distinction between the line profiles. By fitting Equation 16.11 to the different line

profiles, the depth of each profile in relation to the surface can be obtained for the

six different but equidistant positions along the projected line direction. These

different depths are shown in Figure 16.5. The error on each depth is provided

by the fitting algorithm and mainly depends on the noise of the image as well as

on the number of averaged line profiles entering each of the six height profiles.
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Figure16.4. Analyzedheightprofiles:ThelineprofileofFigure16.3hasbeen
dividedintosixpartsofequaldistance,asshownintheinsetinFigure16.2.
Afterward,theformulafromEquation16.11hasbeenfitted(solidlines)to
eachofthesixheightprofilestoobtaintheverticalpositionofthedislocation
corebelowthesurface.Thefirstheightprofile(circles)representsapointon
thedislocationlinebeingincloseproximitytothesurfaceandhasashape
closetoastepfunction. Thesixthprofile(uprighttriangles)representsa
pointonthedislocationlinefartherawayfromthesurfaceandhasanalmost
linearshapebecausetheextendeddisplacementfieldofthedislocation.

Thepointstracethesubsurfacepositionofthedislocationline.Byfittingalinear

slopetothedepthsofthelineprofiles,theactualintersectionangleofthedis-

locationlinecanbemeasured(assumingastraightdislocationline). Ascanbe

seenfromFigure16.5,thedislocationshowninFigure12.1hasanintersection

angleofabout-14➦. Thelinearslopeisingoodaccordancewiththedata,even

withrespecttotheerrorsofthedepthvalues.Usingthismethodincombination

withthemethodpresentedinChapter15,thethree-dimensionalangleofanedge

dislocationintersectingthecleavagesurfacecanbedetermined.
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16.1. Determination of the intersection angle of the dislocation line

Figure 16.5. Depth of the dislocation core below the surface as a function
of the distance from the point of the dislocation intersecting the surface. By
fitting Equation 16.11 to the height profiles in Figure 16.4, the depth of the
dislocation can be obtained for the six different but equidistant positions along
the projected line direction. The error on each depth is provided by the fit-
ting algorithm and mainly depends on the noise of the image as well as on
the number of averaged line profiles entering each of the six height profiles.
Fitting a linear slope to the depths of the line profiles returns the actual in-
tersection angle of the dislocation line of about -14°.
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16.2. Simulation of the displacement field of a

dislocation

750 nm

(a) Measurement

250 nm

(b) Simulation

Figure 16.6. (a) Dislocation from Figure 16.2 intersecting the GaN cleavage
surface marked by a dashed circle with the point of intersection being located
at the center of the circle. (b) Simulated displacement filed of an edge dislo-
cation with an intersection angle of 14° as obtained for (a) in Figure 16.5.
Note the different length scale and rotation of both images.

If there is no way of measuring a line profile as in Figure 16.3, i.e. if the resolution

of the STM image is too small or if there is too much noise in the data, the

formalism presented in this Chapter can still be used to qualitatively determine

the intersection angle of the dislocation line. Computing the change in height of

the surface induced by the dislocation line from Equation 16.11 for a set of different

heights, i.e. values of height increasing or decreasing linearly, the arising change in

contrast of the dislocation can be illustrated for any given intersection angle of the

dislocation. The resulting image can then be compared to the noisy data, as shown

in Figure 16.6, since the intersection angle of the dislocation line crucially changes
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16.2. Simulation of the displacement field of a dislocation

250 nm

(a) Simulation: 50°

250 nm

(b) Simulation: 5°

Figure 16.7. Simulated displacement fields of two dislocations. (a) Edge
dislocation intersecting the surface with an angle of 50°. The contrast changes
continuously from bright to dark in clockwise direction. (b) Edge dislocation
intersecting the cleavage surface with an angle of 5°. The gradient of contrast
is still close to the one of a plain atomic step. Note the different length scale
of both images.

the gradient of the contrast: The closer to perpendicular4 the angle becomes, the

wider the distance (in circular measure) required for the gradient to change from

its minimum to its maximum. A simulated edge dislocation with an intersection

angle of 50° is shown in Figure 16.7(a), showing a continuous change in the contrast

from bright to dark in clockwise direction. For very small angles, the gradient of

contrast is like a step function comparable to the one of an atomic surface step,

as shown by the simulation of a dislocation intersecting the cleavage surface at 5°

(Figure 16.7(b)).

In summary, the angle between an edge dislocation and the cleavage surface can

be approximated by comparing the simulated contrast of the intersecting disloca-

tion with the measurement.

4A dislocation line perpendicularly intersecting the surface would be represented by an angle of
90°. Due to the arc tangent in Equation 16.11, however, there is a singularity for this angle.
Nonetheless, a perpendicular dislocation line would be easy to identify due to the gradient of
contrast changing all over the 360° of the distance in circular measure.
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17. Conclusion

The structure, electronic properties, and interactions of extended as well as micro-

scale defects in [0001] grown GaN epitaxial layers were investigated using cross-

sectional scanning tunneling microscopy (XSTM) and spectroscopy (XSTS).

First, the electronic structure of the cross-sectional GaN (101̄0) surface was in-

vestigated in view of identifying defects by XSTM and interpreting XSTS data of

defects. A new approach was developed to successfully probe the controversially

debated minimum of the empty GaN (101̄0) surface state utilizing the results of

ab initio calculations to provide a set of experimental parameters. Using this new

approach, the surface state was found to be located below the minimum of the

conduction band and hence to be situated within the fundamental band gap. It

has a surprisingly low density of states which is caused by an uncommon dispersion

as well as by a special decay characteristic: One the one hand, there is a steep

minimum with a low density of states near the Γ̄ point and on the other hand

an extremely flat area with a high density of states near the edge of the Brillouin

Zone. As a consequence, the non-polar GaN (101̄0) surface is intrinsically pinned

at (EC − 0.6) ± 0.2 eV. The empty surface state in the fundamental band gap,

however, does not inhibit a tip-induced band bending as it cannot be refilled with

electrons since the surface state and the conduction band have the same azimuthal

quantum number.

Second, the geometric and electronic structure of overgrown v-shaped defects in

gallium nitride epitaxial layers was investigated by cross-sectional scanning tunnel-

ing microscopy and spectroscopy. By determination of their opening angle in the

cross-sectional projection, the v-shaped defects were found to be three-dimensional

hexagonal pyramidal structures defined by six inclined {112̄2} growth facets. At

their center, the v-shaped defects exhibit inhomogeneous electronic properties such
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as an inhibited tunneling current caused by deep traps. These traps are blocking

electrons from being injected into the conduction band of the GaN epitaxial layers

when the tip is in close proximity to the center of a v-shaped defect.

By measuring large scale STM images of the cleavage surface, the v-shaped

defects were found to exhibit a pronounced meandering around the growth (c-)

direction. The v-shaped defects are supposedly meandering due to them tracing

threading dislocations which themselves are alternating through the crystal. The

interaction between the dislocation and the surrounding inhomogeneous strain

fields is driving the meandering of the dislocation line. A quantitative analysis of

the lateral displacements of the v-shaped defects leads to an estimated maximum

line bending of c-screw dislocations of up to 26°.

Third, the large images also provided information on the spatial distribution

and line directions of dislocations intersecting the cleavage surface. A compari-

son of the spatial distribution of the dislocations and their line directions revealed

the dislocations being bent away from the semipolar facets of the v-shaped de-

fects. The dislocations were found to form bundles of dislocations with parallel

projected line directions. These agglomerations are caused by a line bending due

to a minimization of energy as well as by many-body effects in the repulsive strain

interactions.

For a better characterization of dislocations, a method for the determination of

the angle between the line of a dislocation intersecting the surface and the cleavage

surface itself was presented within this study. By mapping the displacement field

arising from a dislocation intersecting the surface, the depth of the dislocation core

below the surface was extracted for discrete distances from the point of intersection.

This yielded the intersection angle of the dislocation line.
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EVS Energy of the valence band edge at the surface

F1/2(x) Fermi-Dirac integral

f(E) Fermi-Dirac distribution
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G Shear modulus

~ Planck constant/2π

I, I0 Current

kB Boltzman constant

m Inverse Poisson’s ratio

m∗n Effective mass of electrons

m∗p Effective mass of holes

Mts Matrix element of the transition of ψt to ψs

n Concentration of negative charge due to electrons

N−a Concentration of ionized acceptors

NC Effective density of states in the conduction band

N+
d Concentration of ionized donors

NV Effective density of states in the valence band

p Concentration of positive charge due to holes

R Radius of curvature of the tip

~r0 Position of the tip

SGa Unoccupied Ga surface state

SN N-derived occupied surface state

SQ Quantized state

T Temperature

T (ε, eV, z, U) Transmission coefficient

u Displacement in x direction

U Potential

V Voltage

v Displacement in y direction

V0 Height of the potential V (z)

Vset Gap voltage



Vvac Difference in electrostatic potentials

V (z) Time-constant potential

w Space charge region in the semiconductor

xmod Length of one period of the modulation

X̄, X̄ ′, Γ̄, M̄ High symmetry points in the surface Brillouin Zone (de-

fined on page 25)

α, ϕ Opening angle of the v-shaped defect

∆i Jump in lateral displacement between the i-th and (i+1)-th

“v”

δi Displacement of the i-th “v”

δmax Maximum possible displacement of a “v”

∆Φ Contact potential

κ Inverse decay constant

λ Displacement

ν Poisson’s ratio

ξvac Electric field within the gap

ρ(~r0, EF ) Density of states of the sample at the Fermi energy being

measured at the position ~r0 of the tip

ρt Density of states of the tip

Φ Work function

Φm Work function of the metal tip

Φs Work function of the tip

Φt Work function of the sample

φs Barrier potential

ΦSC Work function of the semiconductor

χSC Electron affinity of the semiconductor

ψs A state in the sample



ψt A state in the tip

ψ(z) Wave function
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