000151997 001__ 151997
000151997 005__ 20210129213633.0
000151997 0247_ $$2doi$$a10.1016/j.physa.2014.03.004
000151997 0247_ $$2WOS$$aWOS:000337854200032
000151997 0247_ $$2altmetric$$aaltmetric:1967986
000151997 037__ $$aFZJ-2014-01821
000151997 041__ $$aEnglish
000151997 082__ $$a500
000151997 1001_ $$0P:(DE-Juel1)156196$$aZhang, Jun$$b0$$eCorresponding Author$$ufzj
000151997 245__ $$aComparison of intersecting pedestrian flows based on experiments
000151997 260__ $$aAmsterdam$$bNorth Holland Publ. Co.$$c2014
000151997 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1396421701_15674
000151997 3367_ $$2DataCite$$aOutput Types/Journal article
000151997 3367_ $$00$$2EndNote$$aJournal Article
000151997 3367_ $$2BibTeX$$aARTICLE
000151997 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000151997 3367_ $$2DRIVER$$aarticle
000151997 520__ $$aIntersections of pedestrian flows feature multiple types, varying in the numbers of flow directions as well as intersecting angles. In this article results from intersecting flow experiments with two different intersecting angles are compared. To analyze the transport capabilities the Voronoi method is used to resolve the fine structure of the resulting velocity–density relations and spatial dependence of the measurements. The fundamental diagrams of various flow types are compared and show no apparent difference with respect to the intersecting angle 90° and 180°. This result indicates that head-on conflicts of different types of flow have the same influence on the transport properties of the system, which demonstrates the high self-organization capabilities of pedestrians.
000151997 536__ $$0G:(DE-HGF)POF2-411$$a411 - Computational Science and Mathematical Methods (POF2-411)$$cPOF2-411$$fPOF II$$x0
000151997 7001_ $$0P:(DE-Juel1)132266$$aSeyfried, Armin$$b1$$ufzj
000151997 773__ $$0PERI:(DE-600)1466577-3$$a10.1016/j.physa.2014.03.004$$p316–325$$tPhysica / A$$v405$$x0378-4371$$y2014
000151997 8564_ $$uhttps://juser.fz-juelich.de/record/151997/files/FZJ-2014-01821.pdf$$yRestricted
000151997 909CO $$ooai:juser.fz-juelich.de:151997$$pVDB
000151997 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156196$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000151997 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132266$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000151997 9132_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data $$vComputational Science and Mathematical Methods$$x0
000151997 9131_ $$0G:(DE-HGF)POF2-411$$1G:(DE-HGF)POF2-410$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lSupercomputing$$vComputational Science and Mathematical Methods$$x0
000151997 9141_ $$y2014
000151997 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000151997 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000151997 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000151997 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000151997 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000151997 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000151997 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000151997 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000151997 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000151997 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000151997 920__ $$lyes
000151997 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000151997 980__ $$ajournal
000151997 980__ $$aVDB
000151997 980__ $$aI:(DE-Juel1)JSC-20090406
000151997 980__ $$aUNRESTRICTED