000152032 001__ 152032
000152032 005__ 20240625095039.0
000152032 0247_ $$2doi$$a10.1088/1367-2630/14/1/013051
000152032 0247_ $$2Handle$$a2128/5969
000152032 0247_ $$2WOS$$aWOS:000300413900005
000152032 0247_ $$2altmetric$$aaltmetric:574485
000152032 037__ $$aFZJ-2014-01852
000152032 082__ $$a530
000152032 1001_ $$0P:(DE-Juel1)143759$$aDiVincenzo, David$$b0$$eCorresponding Author$$ufzj
000152032 245__ $$aNonlinear spectroscopy of superconducting anharmonic resonators
000152032 260__ $$a[Bad Honnef]$$bDt. Physikalische Ges.$$c2012
000152032 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s152032
000152032 3367_ $$2DataCite$$aOutput Types/Journal article
000152032 3367_ $$00$$2EndNote$$aJournal Article
000152032 3367_ $$2BibTeX$$aARTICLE
000152032 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000152032 3367_ $$2DRIVER$$aarticle
000152032 520__ $$aWe formulate a model for the steady state response of a nonlinear quantum oscillator structure, such as those used in a variety of superconducting qubit experiments, when excited by a steady, but not necessarily small, ac tone. We show that this model can be derived directly from a circuit description of some recent qubit experiments in which the state of the qubit is read out directly, without a superconducting quantum interference device (SQUID) magnetometer. The excitation profile has a rich structure depending on the detuning of the tone from the small-signal resonant frequency, on the degree of damping and on the excitation amplitude. We explore two regions in detail. Firstly, at high damping there is a trough in the excitation response as a function of detuning, near where the classical Duffing bifurcation occurs. This trough has been understood as a classical interference between two metastable responses with opposite phase. We use Wigner function studies to show that while this picture is roughly correct, there are also more quantum mechanical aspects to this feature. Secondly, at low damping we study the emergence of sharp, discrete spectral features from a continuum response. We show that these the structures, associated with discrete transitions between different excited-state eigenstates of the oscillator, provide an interesting example of a quantum Fano resonance. The trough in the Fano response evolves continuously from the 'classical' trough at high damping.
000152032 536__ $$0G:(DE-HGF)POF2-422$$a422 - Spin-based and quantum information (POF2-422)$$cPOF2-422$$fPOF II$$x0
000152032 7001_ $$0P:(DE-HGF)0$$aSmolin, J. A.$$b1
000152032 773__ $$0PERI:(DE-600)1464444-7$$a10.1088/1367-2630/14/1/013051$$p013051$$tNew journal of physics$$v14$$x1367-2630$$y2012
000152032 8564_ $$yPublishers version according to licensing conditions.$$zPublished final document.
000152032 8564_ $$uhttps://juser.fz-juelich.de/record/152032/files/FZJ-2014-01852.pdf$$yOpenAccess$$zPublished final document.
000152032 909CO $$ooai:juser.fz-juelich.de:152032$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000152032 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143759$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000152032 9132_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000152032 9131_ $$0G:(DE-HGF)POF2-422$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vSpin-based and quantum information$$x0
000152032 9141_ $$y2013
000152032 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000152032 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000152032 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000152032 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000152032 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000152032 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000152032 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000152032 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000152032 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000152032 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000152032 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000152032 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000152032 915__ $$0StatID:(DE-HGF)1020$$2StatID$$aDBCoverage$$bCurrent Contents - Social and Behavioral Sciences
000152032 920__ $$lyes
000152032 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x0
000152032 9201_ $$0I:(DE-Juel1)IAS-3-20090406$$kIAS-3$$lTheoretische Nanoelektronik$$x1
000152032 980__ $$ajournal
000152032 980__ $$aUNRESTRICTED
000152032 980__ $$aFullTexts
000152032 980__ $$aI:(DE-Juel1)PGI-2-20110106
000152032 980__ $$aI:(DE-Juel1)IAS-3-20090406
000152032 980__ $$aVDB
000152032 9801_ $$aFullTexts
000152032 981__ $$aI:(DE-Juel1)IAS-3-20090406