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The chemical compositions of defective regions in microcrystalline thin film Si solar cells are

studied using energy-dispersive X-ray spectroscopy and electron energy-loss spectroscopy (EELS)

in the scanning transmission electron microscope. Nanometer-resolved chemical analysis reveals the

presence of ZnO in micrometer-long defective regions. Due to the recent application of unmixing

algorithm to EELS, the chemical compositions of the defective regions are determined objectively,

without introducing artefacts from the fitting procedures. It is shown that the defective regions in the

Si layer are filled by ZnO, which diffuses along voids that propagate from the bottom up to the top

ZnO contacts. VC 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4800569]

Thin film Si solar cells require additional elements to

enhance light absorption because Si is a poor light absorber,

converting only a fraction of the incident light directly into

electron-hole pairs. Such enhancement is normally achieved

by incorporating random1,2 or periodic3,4 substrate interface

textures in order to scatter light. However, the use of a highly

textured substrate can result in the formation of defective

regions above V-shaped valleys, which can extend through

the entire active Si layer.5,6 Recently, focused ion beam (FIB)

“slice and view” tomography has been used to show that such

defects can take the form of continuous networks of filaments

of defective material, rather than simple line defects that

extend between the top and bottom contacts.7 Although the

deleterious effect of the defective regions on the electrical

properties of solar cells can be limited by smoothing the tex-

ture of the electrode on which the active layers are depos-

ited,7 textures with high aspect ratios are needed for strong

light scattering in order to achieve an increase of up to 45%

in current density.8

Scanning transmission electron microscopy (STEM)

allows direct imaging of the chemical compositions of mate-

rials. High-angle annular dark-field (HAADF) images, which

are sensitive to local variations in atomic number and speci-

men thickness, can be recorded at the same time as energy-

dispersive X-ray (EDX) and electron-energy-loss (EEL)

spectra. The latter signals can be used to provide composi-

tional information with close-to-atomic spatial resolution.9,10

Furthermore, chemical bonding information can be obtained

from energy-loss near-edge structure (ELNES)11 and

pixel-by-pixel elemental maps can be determined from the

recorded spectra.12

In this letter, the elemental compositions of defective

regions in a hydrogenated microcrystalline Si (lc-Si:H) solar

cell are determined on the nanometer scale. In particular, we

apply spectral unmixing (SU) using a vortex component

analysis (VCA) algorithm, which has only recently been

applied to electron energy-loss spectroscopy (EELS) spectra,

to determine local chemical compositions and to determine

bonding information from recorded EEL spectra.12

Experimental results were obtained from a single-

junction n-i-p lc-Si:H solar cell grown on a glass substrate.

The bottom (back) electrode consists of a 2-lm-thick B-doped

ZnO layer, which was deposited using low-pressure chemical

vapour deposition (LP-CVD) and has a V-shaped texture.

The active 2-lm-thick lc-Si:H layers were deposited using

plasma-enhanced chemical vapour deposition (PE-CVD). No

smoothing was applied to the textured ZnO layer. The top

(front) contact was also a 2-lm-thick B-doped ZnO layer de-

posited using LP-CVD.

An 80-nm-thick electron-transparent TEM specimen

was prepared using a dual-beam FIB workstation. STEM

EDX mapping was carried out using an EDAX Si(Li) detec-

tor on an FEI Tecnai F20 microscope operated at 200 kV. A

post-column Gatan Imaging Filter (GIF Quantum) was used

for STEM EEL spectrum imaging on a double-CS-corrected

FEI Titan microscope operated at 300 kV. EDX spectrum

images were 15� 50� 4096 pixels in size, corresponding

to dimensions of 150 nm� 500 nm� 20.48 keV and were

recorded using an acquisition time of 1 s/pixel at 5 eV/chan-

nel. EEL spectra were recorded on a 2048 pixel camera in

image-coupled mode using a convergence semi-angle of 25

mrad and a collection semi-angle of �25 mrad with a size

of 51� 218� 2048 pixels, corresponding to dimensions of

0.31 lm� 1.34 lm� 2048 eV, using an acquisition time of

1 s/pixel at 1 eV/channel.

Figure 1(a) shows an HAADF STEM image of the speci-

men, in which a rectangle indicates a defective region, which

propagates from the bottom of the ZnO layer into the active

lc-Si:H and was chosen for detailed examination below. In

this image, darker contrast corresponds to regions that have a

lower atomic number or density. Figures 1(b)–1(d) are ele-

mental maps obtained by integrating the (b) Si K, (c) O K,

and (d) Zn Ka EDX peak intensities. Maps obtained using the

Zn Kb and Zn La edges (not shown) were similar to Fig. 1(d).a)Tel.: þ49 2461 61 9478. Electronic mail: martial.duchamp@gmail.com.
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The highest number of counts was �40 for Zn Ka and �70

for Si K. As the background level below the peaks was below

2 counts and the peaks of interest did not overlap, direct inte-

gration of the peak areas was used to obtain the maps. Some

of the Si signal in the defective region may originate from the

surrounding Si matrix.7 Whereas the Zn signal is confined to

the defective area, it is impossible to use the EDX maps to es-

tablish whether the O signal is associated with surface oxida-

tion of the TEM specimen or if it originates from the growth

of the solar cell. This ambiguity is now addressed by using

EELS combined with SU using VCA.

Figure 2(a) shows an HAADF STEM image recorded

pixel-by-pixel together with EEL spectra from the same

region as in Fig. 1. The resulting background-subtracted

Si L, C K, O K, Zn L and Si K EEL signals are shown in

Figs. 2(b)–2(f). The presence of O and Zn in the defective

regions can be seen in Figs. 2(d) and 2(e), respectively. The

Zn signal appears to decrease towards the lower part of this

region, whereas the C signal appears to increase, as shown in

Fig. 2(c). The presence of C is likely to be associated with

post-specimen-preparation contamination. The apparent sub-

stitution of Zn by C may, therefore, be explained by the

presence of voids in the interior of the defective region in the

Si layer, which are also less accessible for the diffusion of

Zn during growth. Although the signal collected at the Si K

edge is two orders of magnitude lower than that at the Si L

edge, it is affected much less by the presence of preceding

edges. The O signal shows a strong correlation with the Zn

signal. However, O is also present in the Si-rich regions, sug-

gesting that some of the O signal may be associated with the

presence of O on the surfaces of the TEM specimen.

An important advantage of using EEL over EDX spec-

troscopy is its sensitivity to chemical states and to the local

atomic environment in the specimen. In particular, ELNES

can be compared with that from known materials and used to

identify the local atomic coordination of each element. A

number of different statistical methods can be used to separate

the different contributions to recorded EEL edge shapes from

a large dataset into components.13,14 Recently, SU has been

proposed for the analysis of EEL spectrum images and shown

to be superior to the use of principal or independent compo-

nent analysis.12 SU allows signals that have poor signal-to-

noise ratio but can be obtained in the form of an average of a

given spectral component within an area of interest to be

extracted. In this way, not only elemental maps but also

“chemical bonding” maps can be obtained using spectrum

imaging. In order to determine the chemical state of each ele-

ment in the defective region in the present specimen, SU was

applied by performing VCA using an algorithm provided by

Nascimento et al.,15 run under GNU OCTAVE software.

When using this method, the number of components to

be extracted from an EEL spectrum image must be chosen by

the user. In our first attempt, we assumed that the main com-

ponents would be associated with the presence of Si, ZnO, C,

and SiO2 and, therefore, specified four components in the

VCA algorithm. This approach proved to be unsuccessful, as

it was not possible to separate the C and SiO2 signals into

two separate spectra, with the 3rd and 4th components both

retaining signatures of Si, C, and O.

Instead, decomposition into three components proved to

be more successful and provided a meaningful physical

decomposition of the recorded signal. The resulting three

spectral components are shown in Fig. 3. The Si and ZnO

contributions are separated clearly from each other, with the

Si component retaining only the Si K and Si L edges, the ZnO

component retaining only the Zn L and O K edges, and the

third component containing Si, C, and O peaks. The spectral

contributions to the O K edge are enlarged in the lower left of

Fig. 3 and demonstrate fingerprints that have previously been

shown to correspond to ZnO (Ref. 16) and SiO2 (Ref. 11)

(marked A and B, respectively). Interestingly, the Si compo-

nent does not contain a contribution from the O K edge, indi-

cating that two distinct types of bonding to Si atoms have

been separated from each other using VCA, one of which is

associated only with surrounding Si atoms and the other with

Si, O, and C atoms. Si, C, and O are not likely to form a single

alloy, but could not be separated from each other using VCA

in the present study, as they are always present together in the

spectra. Nevertheless, it is most likely that they are present in

the form of SiO2 and C. The spectral contributions to the Zn

L edge are enlarged in the lower right of Fig. 3 and confirm

that all of the Zn is associated only with ZnO.

FIG. 1. (a) HAADF STEM image of an FIB-prepared TEM specimen of a

solar cell. The white rectangle indicates an area close to the front contact,

which was analysed in detail using EDX and EEL spectroscopy. (b)-(d)

EDX maps obtained using the (b) Si K, (c) O K, and (d) Zn Ka signals. The

field of view for (b)-(d) is 150 nm � 500 nm.

FIG. 2. (a) High-angle annular dark-field STEM image and (b)-(f)

background-subtracted EEL spectrum images of a defective region in the

region of the solar cell indicated in Fig. 1. The maps were obtained on a pixel-

by-pixel basis from the recorded 3D dataset by subtracting a power-law back-

ground as a function of energy beneath each edge and integrating the resulting

edge intensity. The field of view in each figure is 0.31lm� 1.34lm. The inte-

gration ranges in eV are indicated below each map.
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Figure 4 shows final “chemical” maps derived using the

spectral decomposition shown in Fig. 3. The Si map now

shows only the intensity of the pure Si component and does

not contain an SiO2 contribution, in contrast to Fig. 2. The

ZnO map is related closely to the Zn and O maps shown in

Fig. 2. The SiO2 þ C map contains a measurable signal

across the entire specimen and is likely to be due to TEM

sample contamination during TEM sample preparation and/

or during the TEM experiment. In this way, SU allows O in

the ZnO in the upper part of the defect to be distinguished

from O in SiO2 in the lower part.

Our results show that STEM spectrum imaging can be

combined with VCA post-processing to characterise a state-

of-the-art lc-Si:H solar cell and to demonstrate that ZnO de-

posited using LP-CVD can creep into a defective region,

most probably during deposition of the top contact of the de-

vice. The fact that such diffusion of ZnO is possible indicates

that the defective regions are primarily empty following

growth of the active lc-Si:H layer, at least close to the front

contact. Given that EDX and EEL spectroscopy, as applied in

the present study, have detection limits of only �0.1 at. % at

best, it is conceivable that some ZnO may have diffused

through the empty defective area as far as the bottom contact,

resulting in the possibility of a short-circuit of the solar cell.

The use of a higher-solid-angle EDX detector or cumulative

acquisition of EEL spectra in a future study may allow lower

concentrations of ZnO to be mapped in such devices.

Significantly, our combined analysis techniques allow true

“chemical” rather than “elemental” mapping and provide a

better understanding of the true natures of defective regions

in solar cells, paving the way towards the growth of devices

with improved efficiencies.
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FIG. 3. Spectral components obtained using vertex component analysis

from the EEL spectrum image signals shown in Fig. 2. The regions of the

spectra close to the O K and Zn L edges are enlarged in the lower graphs.

The edges of the different elements are marked using arrows in the top

graph. A and B refer to O K edge signals extracted for the ZnO and SiO2

components, respectively.

FIG. 4. Maps of the three spectral components obtained using vertex compo-

nent analysis from the EEL spectrum image signals shown in Fig. 2, corre-

sponding to the spectral signatures shown in Fig. 3. The field of view in each

image is 0.31 lm� 1.34 lm.
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