000152035 001__ 152035
000152035 005__ 20240610121006.0
000152035 0247_ $$2doi$$a10.1016/j.solmat.2013.02.032
000152035 0247_ $$2WOS$$aWOS:000319486700019
000152035 037__ $$aFZJ-2014-01855
000152035 041__ $$aEnglish
000152035 082__ $$a530
000152035 1001_ $$0P:(DE-HGF)0$$aBiron, R.$$b0$$eCorresponding Author
000152035 245__ $$aNew Progress in the fabrication of n-i-p micromorph solar cells for opaque substrates
000152035 260__ $$aAmsterdam$$bNorth Holland$$c2013
000152035 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1396417016_14486
000152035 3367_ $$2DataCite$$aOutput Types/Journal article
000152035 3367_ $$00$$2EndNote$$aJournal Article
000152035 3367_ $$2BibTeX$$aARTICLE
000152035 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000152035 3367_ $$2DRIVER$$aarticle
000152035 520__ $$aIn this paper, we investigate tandem amorphous/microcrystalline silicon solar cells with asymmetric intermediate reflectors grown in the n–i–p substrate configuration. We compare different types of substrates with respect to their light-trapping properties as well as their influence on the growth of single-junction microcrystalline cells. Our most promising back reflector combines a textured zinc oxide film grown by low-pressure chemical vapor deposition, a silver film for reflection, and a zinc oxide buffer layer. Grown on this substrate, microcrystalline cells exhibit excellent response in the infrared while keeping high open-circuit voltage and fill factor, leading to efficiencies of up to 10.0%. After optimizing the morphology of the asymmetric intermediate reflector, we achieve an n–i–p micromorph solar cell stabilized efficiency of 11.6%, using 270 nm and 1.7 μm of silicon for the absorber layer of the amorphous top cell and the microcrystalline bottom cell, respectively. Using this original device architecture, we reach efficiencies close to those of state-of-the-art n–i–p and p–i–n micromorph devices, demonstrating a promising route to deposit high-efficiency thin-film silicon solar cells on opaque substrates.
000152035 536__ $$0G:(DE-HGF)POF2-424$$a424 - Exploratory materials and phenomena (POF2-424)$$cPOF2-424$$fPOF II$$x0
000152035 7001_ $$0P:(DE-HGF)0$$aHänni, S.$$b1
000152035 7001_ $$0P:(DE-HGF)0$$aBoccard, M.$$b2
000152035 7001_ $$0P:(DE-HGF)0$$aPahud, C.$$b3
000152035 7001_ $$0P:(DE-HGF)0$$aSöderström, K.$$b4
000152035 7001_ $$0P:(DE-Juel1)145413$$aDuchamp, Martial$$b5$$ufzj
000152035 7001_ $$0P:(DE-Juel1)144121$$aDunin-Borkowski, Rafal$$b6$$ufzj
000152035 7001_ $$0P:(DE-HGF)0$$aBugnon, G.$$b7
000152035 7001_ $$0P:(DE-HGF)0$$aDing, L.$$b8
000152035 7001_ $$0P:(DE-HGF)0$$aNicolay, S.$$b9
000152035 7001_ $$0P:(DE-HGF)0$$aParascandolo, G.$$b10
000152035 7001_ $$0P:(DE-HGF)0$$aMeillaud, F.$$b11
000152035 7001_ $$0P:(DE-HGF)0$$aDespeisse, M.$$b12
000152035 7001_ $$0P:(DE-HGF)0$$aHaug, F. J.$$b13
000152035 7001_ $$0P:(DE-HGF)0$$aBallif, Chr.$$b14
000152035 773__ $$0PERI:(DE-600)2012677-3$$a10.1016/j.solmat.2013.02.032$$p147 - 155$$tSolar energy materials & solar cells$$v114$$x1879-3398$$y2013
000152035 8564_ $$uhttps://juser.fz-juelich.de/record/152035/files/FZJ-2014-01855.pdf$$yRestricted$$zPublished final document.
000152035 909CO $$ooai:juser.fz-juelich.de:152035$$pVDB
000152035 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145413$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000152035 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000152035 9132_ $$0G:(DE-HGF)POF3-424$$1G:(DE-HGF)POF3-420$$2G:(DE-HGF)POF3-400$$aDE-HGF$$bForschungsbereich Luftfahrt, Raumfahrt und Verkehr$$lRaumfahrt$$vResearch under Space Conditions$$x0
000152035 9131_ $$0G:(DE-HGF)POF2-424$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vExploratory materials and phenomena$$x0
000152035 9141_ $$y2013
000152035 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000152035 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000152035 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000152035 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000152035 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000152035 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000152035 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000152035 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000152035 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000152035 920__ $$lyes
000152035 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x0
000152035 980__ $$ajournal
000152035 980__ $$aVDB
000152035 980__ $$aI:(DE-Juel1)PGI-5-20110106
000152035 980__ $$aUNRESTRICTED
000152035 981__ $$aI:(DE-Juel1)ER-C-1-20170209