000152037 001__ 152037
000152037 005__ 20240610121007.0
000152037 0247_ $$2doi$$a10.1016/j.solmat.2013.05.016
000152037 0247_ $$2WOS$$aWOS:000326908000008
000152037 037__ $$aFZJ-2014-01857
000152037 041__ $$aEnglish
000152037 082__ $$a530
000152037 1001_ $$0P:(DE-HGF)0$$aSever, M.$$b0$$eCorresponding Author
000152037 245__ $$aCombined model of non-conformal layer growth for accurate optical simulation of thin-film silicon solar cells
000152037 260__ $$aAmsterdam$$bNorth Holland$$c2013
000152037 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1396417508_16439
000152037 3367_ $$2DataCite$$aOutput Types/Journal article
000152037 3367_ $$00$$2EndNote$$aJournal Article
000152037 3367_ $$2BibTeX$$aARTICLE
000152037 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000152037 3367_ $$2DRIVER$$aarticle
000152037 520__ $$aIn thin-film silicon solar cells textured interfaces are introduced, leading to improved antireflection and light trapping capabilities of the devices. Thin-layers are deposited on surface-textured substrates or superstrates and the texture is translated to internal interfaces. For accurate optical modelling of the thin-film silicon solar cells it is important to define and include the morphology of textured interfaces as realistic as possible. In this paper we present a model of thin-layer growth on textured surfaces which combines two growth principles: conformal and isotropic one. With the model we can predict the morphology of subsequent internal interfaces in thin-film silicon solar cells based on the known morphology of the substrate or superstrate. Calibration of the model for different materials grown under certain conditions is done on various cross-sectional scanning electron microscopy images of realistic devices. Advantages over existing growth modelling approaches are demonstrated—one of them is the ability of the model to predict and omit the textures with high possibility of defective regions formation inside the Si absorber layers. The developed model of layer growth is used in rigorous 3-D optical simulations employing the COMSOL simulator. A sinusoidal texture of the substrate is optimised for the case of a micromorph silicon solar cell. More than a 50 % increase in short-circuit current density of the bottom cell with respect to the flat case is predicted, considering the defect-free absorber layers. The developed approach enables accurate prediction and powerful design of current-matched top and bottom cell.
000152037 536__ $$0G:(DE-HGF)POF2-424$$a424 - Exploratory materials and phenomena (POF2-424)$$cPOF2-424$$fPOF II$$x0
000152037 7001_ $$0P:(DE-HGF)0$$aLipovsek, B.$$b1
000152037 7001_ $$0P:(DE-HGF)0$$aKrc, J.$$b2
000152037 7001_ $$0P:(DE-HGF)0$$aCampa, A.$$b3
000152037 7001_ $$0P:(DE-HGF)0$$aPlaza, Guillermo Sanchez$$b4
000152037 7001_ $$0P:(DE-HGF)0$$aHaug, F. J.$$b5
000152037 7001_ $$0P:(DE-Juel1)145413$$aDuchamp, Martial$$b6$$ufzj
000152037 7001_ $$0P:(DE-HGF)0$$aSoppe, W.$$b7
000152037 7001_ $$0P:(DE-HGF)0$$aTopic, M.$$b8
000152037 773__ $$0PERI:(DE-600)2012677-3$$a10.1016/j.solmat.2013.05.016$$p59-66$$tSolar energy materials & solar cells$$v119$$x1879-3398$$y2013
000152037 8564_ $$uhttps://juser.fz-juelich.de/record/152037/files/FZJ-2014-01857.pdf$$yRestricted$$zPublished final document.
000152037 909CO $$ooai:juser.fz-juelich.de:152037$$pVDB
000152037 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145413$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000152037 9132_ $$0G:(DE-HGF)POF3-424$$1G:(DE-HGF)POF3-420$$2G:(DE-HGF)POF3-400$$aDE-HGF$$bForschungsbereich Luftfahrt, Raumfahrt und Verkehr$$lRaumfahrt$$vResearch under Space Conditions$$x0
000152037 9131_ $$0G:(DE-HGF)POF2-424$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vExploratory materials and phenomena$$x0
000152037 9141_ $$y2013
000152037 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000152037 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000152037 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000152037 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000152037 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000152037 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000152037 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000152037 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000152037 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000152037 920__ $$lyes
000152037 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x0
000152037 980__ $$ajournal
000152037 980__ $$aVDB
000152037 980__ $$aI:(DE-Juel1)PGI-5-20110106
000152037 980__ $$aUNRESTRICTED
000152037 981__ $$aI:(DE-Juel1)ER-C-1-20170209