001     152037
005     20240610121007.0
024 7 _ |a 10.1016/j.solmat.2013.05.016
|2 doi
024 7 _ |a WOS:000326908000008
|2 WOS
037 _ _ |a FZJ-2014-01857
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Sever, M.
|0 P:(DE-HGF)0
|b 0
|e Corresponding Author
245 _ _ |a Combined model of non-conformal layer growth for accurate optical simulation of thin-film silicon solar cells
260 _ _ |a Amsterdam
|c 2013
|b North Holland
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1396417508_16439
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a In thin-film silicon solar cells textured interfaces are introduced, leading to improved antireflection and light trapping capabilities of the devices. Thin-layers are deposited on surface-textured substrates or superstrates and the texture is translated to internal interfaces. For accurate optical modelling of the thin-film silicon solar cells it is important to define and include the morphology of textured interfaces as realistic as possible. In this paper we present a model of thin-layer growth on textured surfaces which combines two growth principles: conformal and isotropic one. With the model we can predict the morphology of subsequent internal interfaces in thin-film silicon solar cells based on the known morphology of the substrate or superstrate. Calibration of the model for different materials grown under certain conditions is done on various cross-sectional scanning electron microscopy images of realistic devices. Advantages over existing growth modelling approaches are demonstrated—one of them is the ability of the model to predict and omit the textures with high possibility of defective regions formation inside the Si absorber layers. The developed model of layer growth is used in rigorous 3-D optical simulations employing the COMSOL simulator. A sinusoidal texture of the substrate is optimised for the case of a micromorph silicon solar cell. More than a 50 % increase in short-circuit current density of the bottom cell with respect to the flat case is predicted, considering the defect-free absorber layers. The developed approach enables accurate prediction and powerful design of current-matched top and bottom cell.
536 _ _ |a 424 - Exploratory materials and phenomena (POF2-424)
|0 G:(DE-HGF)POF2-424
|c POF2-424
|f POF II
|x 0
700 1 _ |a Lipovsek, B.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Krc, J.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Campa, A.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Plaza, Guillermo Sanchez
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Haug, F. J.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Duchamp, Martial
|0 P:(DE-Juel1)145413
|b 6
|u fzj
700 1 _ |a Soppe, W.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Topic, M.
|0 P:(DE-HGF)0
|b 8
773 _ _ |a 10.1016/j.solmat.2013.05.016
|0 PERI:(DE-600)2012677-3
|p 59-66
|t Solar energy materials & solar cells
|v 119
|y 2013
|x 1879-3398
856 4 _ |u https://juser.fz-juelich.de/record/152037/files/FZJ-2014-01857.pdf
|z Published final document.
|y Restricted
909 C O |o oai:juser.fz-juelich.de:152037
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)145413
913 2 _ |a DE-HGF
|b Forschungsbereich Luftfahrt, Raumfahrt und Verkehr
|l Raumfahrt
|1 G:(DE-HGF)POF3-420
|0 G:(DE-HGF)POF3-424
|2 G:(DE-HGF)POF3-400
|v Research under Space Conditions
|x 0
913 1 _ |a DE-HGF
|b Schlüsseltechnologien
|1 G:(DE-HGF)POF2-420
|0 G:(DE-HGF)POF2-424
|2 G:(DE-HGF)POF2-400
|v Exploratory materials and phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
|l Grundlagen zukünftiger Informationstechnologien
914 1 _ |y 2013
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-5-20110106
|k PGI-5
|l Mikrostrukturforschung
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-5-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ER-C-1-20170209


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21