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Electronic tunneling through ferroelectric insulators is considered to be a key ingredient of future oxide

electronics. We investigate the role of the electronic band structure of the decaying electronic states in the band

gap by first discussing the expected behavior of tunneling in the effective mass model. We demonstrate that,

even for the simple prototype ferroelectric oxides in the perovskite structures PbTiO3 and BaTiO3, the basic

assumption of the effective mass model is not appropriate, and that the correct interpretation of tunneling in

these materials requires a material-specific description of the evanescent states as provided by the complex band

structure.
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I. INTRODUCTION

The possibility to change the electronic tunneling transmis-

sion through a ferroelectric tunneling barrier by switching its

polarization state is an intriguing concept for new devices.1–3

Experiments using ferroelectrics in tunnel junctions or in

piezoresponse force microscopy have already been established

demonstrating the basic functionality.4–8 The additional degree

of freedom provided by the ferroelectric state of the barrier

can also be exploited in magnetic tunnel junctions, opening

the path to a 2-bit memory cell.4 While the basic ideas and

the corresponding theoretical description were established

already,1,9,10 actual theoretical investigations of realistic tun-

neling setups on the basis of an ab initio description of the

material are still rare.11,12 These calculations are rather difficult

to perform and even more difficult to relate to experimental

findings due to the enormous number of possible atomic

realizations of an actual tunnel junction with a ferroelectric

barrier. As a consequence, most predictions of the tunneling

electroresistance effect in these setups are based on model

calculations,1,2,9,10,13 usually assuming a parabolic dispersion

of the bands. In this paper, we focus on improving the

description of this specific aspect of the problem: the electronic

property of the bulk barrier material. Very recently, a similar

approach was published by Hinsche et al.14 combining a

simple screening model for the electrodes with details of the

electronic structure of the barrier to investigate the dependence

of the tunneling on the polarization of the barrier material.
Disregarding any effects due to possible disorder, defects,

or dislocations, different physical effects can be imagined that
will lead to a modification of the tunneling through a perfect
ferroelectric barrier when switching its polarization9: (i) As all
ferroelectrics are piezoelectrics, the change in the polarization
will lead to a structural modification that can influence the
tunneling.9,15,16 In particular, structural modifications that
lead to a change in the thickness of the barrier can be
expected to have a significant impact on the tunneling current.
While these effects may be exploited for some applications
in sensors,17 they could also impose problems in highly
integrated devices due to the strain that they can exert on their
environment. (ii) The modification of the interface between
the ferroelectric barrier and the metallic leads. The change of

the polarization will strongly affect these interfaces, inducing
large screening charges and modifying the chemical binding.
These modifications change the matching of the electronic
wave functions at the interface and, hence, will modify the
tunneling probability of electrons. In general, this purely
electronic effect can be expected to be quite substantial as the
tunneling current is typically carried by only a few states with
energies close to the Fermi level, and any modification of these
states directly will be reflected in the electronic transmission.
(iii) As a third effect, the switching of the polarization can
change the electronic properties of the tunneling barrier itself.
In particular, the difference in band alignment at the interfaces
will manifest itself in a change of the local potential within
the tunnel barrier, which will influence the decay of the wave
function and, thus, the tunneling probability.

We will first summarize the basic predictions of a simple
model of tunneling with focus on the relation between the
decay of the wave function in the barrier and the height of the
barrier. We will then discuss two prototype ferroelectric barrier
materials from the group of perovskite transition-metal-oxide
ferroelectrics: BaTiO3 and PbTiO3. These materials have been
investigated in detail both theoretically and experimentally
before. We will, hence, concentrate only on the description
of the evanescent states relevant for tunneling. We will
show that, for these materials, the simple interpretation of
tunneling in terms of a free-electron picture breaks down. To
demonstrate this breakdown, we calculate the decay constant
κ of electrons tunneling through an insulating barrier from the
realistic electronic band structure. In the simple effective mass
approximation, this decay constant is linked to the height of
the potential barrier V0 relative to the energy of the tunneling
electron and to the effective mass m as

κ = 1

h̄

√

2mV0. (1)

This assumption is underlying many theoretical predictions,
but has only little applicability to transition-metal oxides.

II. SIMPLE TUNNELING THEORY

Electronic tunneling can be treated on various levels.
If one considers the small-bias regime, the problem can
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be investigated using the theory of linear response in the
Kubo formalism. While this is a very general approach, in
practice, one often restricts the interpretation to the case of
noninteracting electrons being scattered at the barrier potential.
In this case, tunneling is described by the famous Landauer
equation18 in which the key quantity is the transmission
probability of electrons through the barrier. A well-known
trivial example of this formalism yields the conductance across
a simple one-dimensional potential barrier of constant height
V0 sandwiched between two free-electron gases. Here, one
obtains for the tunneling conductance

Ŵ = e2

h

(4κk)2

(k2 + κ2)2(1 − e−2κd )2 + (4κk)2e−2κd
e−2κd

≈ e2

h

(4κk)2

(k2 + κ2)2
e−2κd . (2)

In this equation, the exponential factor e−2κd describes
the exponential decay of the wave function with a decay
constant of κ = 1

h̄

√
2mV0 within the barrier of thickness d.

The interface matching of the wave functions is controlled by
the values of κ and the k value describing the free-electron
states in the leads. For thick barriers, the backscattering
contribution corresponding to the exponentially small terms
in the denominator can be neglected, and one obtains the
approximate form in the second line in which the conductance
is simply proportional to the exponential decay factor.

In the case of a ferroelectric barrier material, the electric
polarization within the barrier can lead to a nonconstant barrier
height. Neglecting all local variations of the polarization within
the barrier, one would obtain a barrier potential that changes
linearly within the barrier with some finite slope. Hence,
one aims at generalizing the result of Eq. (2) by simply
assuming that the decay constant κ now varies within the
barrier. The simplest generalization of Eq. (2), which can also
be interpreted as the well-known Wenzel-Kramers-Brillouin
(WKB) approximation for the tunneling of electrons, is given
by

Ŵ = C e−2
∫ d

0
κ(z)dz = C e−2κd , (3)

where κ is simply the averaged decay constant across the
barrier and the constant C contains all further interface details.

When switching the polarization direction, the barrier
potential will change. This change of the barrier will be
actually induced by the modification of the charges at
the interfaces. The polarization manifests itself by an effec-
tive interface charge, which will, in turn, be screened by
the metal leads. In general, this screening will be incomplete
and a remaining depolarizing field corresponding to a barrier
potential of finite slope is expected. We refer to Ref. 10 for a
more detailed discussion of the screening at the interfaces.

Due to time-inversion symmetry, the change of the barrier
potential can only lead to a change in tunneling conductance
if the total tunnel junction is not symmetric, i.e., if the barrier
after switching the polarization is not simply the mirror image
of the unswitched barrier. For small-bias voltages, this requires
that the two interfaces between the leads and the ferroelectric
barrier are different, so that the induced screening charges
within the metallic leads and/or the details of the chemical
and atomic arrangement are different.9 Similarly, at larger

applied voltage, the additional bias potential also breaks the
symmetry between the two polarization states. In the resulting
asymmetric case, the shape of the potential barrier will be
different for the two directions of the polarization leading to a
tunneling electroresistance (TER) given by

TER = Ŵ← − Ŵ→
Ŵ← + Ŵ→

≈ tanh d(κ→ − κ←). (4)

Here we again assumed that the matching at the interface is
the same for both polarization directions, i.e., the factor C in
Eq. (3) is the same for the conductance in both directions
of polarization Ŵ← and Ŵ→. In the effective mass model,
one can easily evaluate the average decay constant and the
resulting TER. Assuming that the barrier height is changing
linearly across the barrier, the decay constant is given by

κ(z) = 1
h̄

√

2m
d

[V1(d − z) + V2z], where V1 and V2 are the

barrier heights at both ends of the tunneling barrier (i.e., at
z = 0 and z = d) (see Fig. 1). The resulting averaged decay
constant is then

κ = 2

3

1

h̄

√
2m

(

V
3/2

1 − V
3/2

2 )

(V1 − V2

) (5)

and the tunneling electroresistance ratio can be expressed in
terms of the barrier heights. Introducing the averaged barrier
height V and setting V1 = V + 1

2
�V and V2 = V − 1

2
�V ,

one obtains, up to order of �V 4,

κ ≈ 1

h̄

√

2mV − 1

h̄

√
2m

1

6V
3/2

�V 2. (6)

This simple analysis demonstrates a few basic features of the
TER due to the change of the barrier potential:

(1) A change in the average potential height V will lead to
a variation of the tunneling transmission. While the effect of
this change of average potential can be expected to be strong,
it will usually be accompanied by a change in energy of the
system, i.e., the system will have a preferred orientation of the
polarization, which might not be a desirable effect for many
application scenarios.

(2) A change of slope of the barrier, i.e., a modification of
�V , will result in a TER effect. This is due to the nonlinearity
of the decay constant as a function of barrier height and the

V

V2

V1

z = 0 z = d

V (z)

FIG. 1. Simplest model of a potential barrier with a ferroelectric

barrier. The barrier height is measured with respect to the energy of

the propagating electrons in the leads.
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effect will depend on the average barrier height. A variation
close to the band edge, i.e., with a small average potential V

will be more significant as one can expect from the parabolic
dispersion of the decaying band.

(3) As the TER is due to the difference of the electronic
structure in the barrier, it scales with the barrier thickness
[see Eq. (4)]. This is a fundamental difference to the TMR in
which the spin polarization of the leads and the interface are
fundamental for the effect. One should also note here that the
TER does not directly depend on a residual field in the barrier.
Such a field will decay with increasing thickness. As averaged
decay constants κ←→ depend on the potential alignment at the
interfaces, they can be expected to be largely independent of
the barrier thickness d, with a TER rising ∝ tanh d�κ .

At this point, one should clarify some of the simplifications
introduced by our model. Most seriously, we assume the decay
of the wave function to be a function of the barrier height only.
In reality, the barrier material will of course respond to the
fields in the barrier and, e.g., the magnitude of the polarization
will change upon reversal. While these effects can be the source
of a TER effect, they are not within the scope of our paper. In
fact, we do not treat the polarization of the material explicitly
except for the fact that we consider it as the source of the
potential variation in the barrier. However, one should not
confuse this potential variation with the polarization of the
material itself. As stressed before, the barrier potential will be
determined by the interface charges.

III. COMPLEX BAND STRUCTURE OF

FERROELECTRICS

In a realistic material, the decay constant usually does not
follow the simple square-root form suggested by the effective
mass model. In a generalization of the usual band-structure
theory for the propagating Bloch states, evanescent states
in a material can be described by states with a complex k

value k = q + iκ , where q denotes the real part of the Bloch
vector and the imaginary part is the decay constant κ . The
theory of this so-called complex band structure, i.e., of the
set of real energies ǫ(q + iκ), was developed by Heine.19

Several approaches to obtain the complex band structure from
ab initio density functional theory (DFT) calculations have
been developed (e.g., Refs. 20–22). In such calculations, one
usually aims at solving the inverse problem of the standard
DFT, i.e., instead of fixing the Bloch vector and solving for
the energy eigenstates, one fixes the energy and solves for
the real and complex Bloch vectors. In the following, we will
present results of such complex band-structure calculations
using our all-electron Green’s function embedding method23

implemented into the full-potential augmented-plane wave
FLEUR code.24 Our calculations were performed using the gen-
eralized gradient approximation (GGA) [for BaTiO3 (Ref. 25)
and for PbTiO3 (Ref. 26)]. While this treatment is not expected
to yield correct absolute values of, e.g., the band gaps or the
effective masses, the general trends as well as the connectivity
of the band structure can be trusted. In the following, we will
dwell on these features.

As the first example of a possible ferroelectric barrier
material, we consider BaTiO3, one of the simplest and best
studied ferroelectric perovskites. It exhibits a large electric

polarization even at room temperature and, hence, might be
an ideal candidate for a ferroelectric tunnel-barrier material.
The ferroelectric phase is obtained starting from the cubic
perovskite structure by a tetragonal distortion of the unit cell
and a buckling in the BaO and TiO2 layers.

To model the experimental growth on a substrate, we fixed

the in-plane lattice constant to that of a SrTiO3 substrate (with

the corresponding theoretical GGA lattice constant of 3.95 Å)

and relaxed the structure in the out-of-plane direction, which

resulted in a unit-cell height of 4.13 Å. The Ti atoms are

displaced by −0.05 Å from the center of the tetragonal cell

spanned by the Ba atoms at the corners of the unit cell, while

the O atoms in the Ba layer are shifted by 0.24 Å and the O

atoms of the Ti layer by 0.15 Å. The very same structure has

been presented in Ref. 27 and its ferroelectric polarization has

been calculated to be 49 µC/cm2.

BaTiO3 is an indirect gap insulator with the minimum of

the conduction band at the Ŵ point and the maximum of the

valence band at the R point. The smallest direct gap of 2.4 eV

can be found at the Ŵ point. Typical for the perovskite structure

are the very flat bands in some parts of the Brillouin zone, in

particular, along the Ŵ-X line. These are a consequence of the

very small overlap that states have in some crystal directions

as, for example, the small overlap of dx2−y2 in the z direction.

The tetragonal distortion in the ferroelectric phase modifies

the band structure around the gap significantly. In particular,

most band degeneracies found at the high-symmetry points of

the Brillouin zone for the cubic phase are lifted.
Figure 2 shows the complex band structure of BaTiO3

corresponding to states propagating in the [100] direction
parallel to the polarization axis. In a (100)-oriented tunnel
junction, electronic states with normal incidence correspond
to the uppermost panel (k‖ = 0), while the other two panels
show the bands relevant for nonvanishing momentum in the
plane of the interface. Most interestingly, the band edges are
formed by states with high effective mass only. The bottom
of the conduction band is realized by the flat band of �2

symmetry at the Ŵ point, which can be seen in the top panel
of Fig. 2, and the valence-band maximum is found at the R

point by the maximum of a flat band of T1′ symmetry. As
all these states at the band edges have little dispersion, the
corresponding evanescent states very quickly acquire a large
imaginary k⊥ value so that these states will not be relevant for
tunneling, except at energies very close to the band edges. For

k‖ = 0, the most slowly decaying state over (nearly) the whole
band gap is given by the evanescent band starting at around

−1 eV. Similar bands can also be identified at the other 
k‖
values shown in Fig. 2. Over the energy range of the band gap,
these bands show little variation of κ = Im(k⊥), i.e., they form
roughly vertical lines in Fig. 2. The surprising consequence
is the similar attenuation of tunneling electrons with different
energies, i.e., all states will decay similarly fast. In the effective
mass model, this would correspond to potential barriers of
equal height.

This finding of roughly constant decay for different 
k‖ and
almost all energies within the band gap is confirmed by the

calculation of the minimal decay constant for all 
k‖ as plotted
in Fig. 3. One should note that the color scale spans only a
small range in this plot. This reflects the fact that the decay
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FIG. 2. (Color online) Complex band structure of BaTiO3. Plotted

are the energies of the states in eV with respect to the Fermi level

εF defined by the highest occupied state as a function of kz given in

internal units (i.u. = 2π/3.95 Å). The three panels show the bands

for different k‖ corresponding to different angles of incident electrons

on the (001) surface. Black dots (central column) represent usual

Bloch states with ℑ(kz) = 0, red dots (left column) evanescent states

with ℜ(kz) = 0, and green dots (right column) evanescent states with

ℜ(kz) = 0.5 i.u.

constants are indeed very similar at the three energies. The only
exception from this are the very small circles at Ŵ in Fig. 3(a)
and M in Fig. 3(c), indicating the contribution from the very
flat bands at the band edges. However, these contributions
can only be seen very close to the energies corresponding to
the conduction-band edge [Fig. 3(a)] and the valence-band
edge [Fig. 3(c)]. Furthermore, one might notice the crosslike
structures reflecting the typical flat bands of a perovskite
structure.

As a second example of a ferroelectric insulator, which
might potentially be relevant for a ferroelectric barrier
material, we discuss PbTiO3. In this case, we used the
experimentally determined structure with atomic positions as
specified in Table I.

The complex band structure depicted in Fig. 4 shows some
similarities with that of BaTiO3 discussed so far. In particular,
the coexistence of both strongly dispersing bands as well as of
bands with very little dispersion can be observed again. Also,
the presence of the ferroelectric distortion manifests itself by a
loss of degeneracy at the high-symmetry points. The band gap
is indirect, with the conduction-band minimum formed by an
extremely flat band along Ŵ-X and the top of the valence band
at the X point. In our calculation, the band gap is about 1.3 eV.
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FIG. 3. (Color online) Minimal Im(kz) in ferroelectric BaTiO3

for the whole two-dimensional Brillouin zone. The three panels (a),

(b), and (c) correspond to energies of ε = 1.84 , 0.91, and 0.00 eV,

respectively. The black spots in the panels (a) and (c) show the areas

in which the Bloch states at the band-gap edges enter.

However, in several aspects, the complex band structure of
PbTiO3 and the expected decay of the wave functions is more
complicated than that of BaTiO3. At energies only slightly
above the valence band, one would expect significant tunneling
due to the evanescent state emerging from the maximum of the
valence band at the X point. At higher energies, however, many
bands with very similar imaginary part of the k vector, i.e., with
very similar decay, can be found. For electrons with normal
incidence, corresponding to the uppermost panel of Fig. 4,
the band emerging from the real band at Ŵ again is rather
similar to the corresponding states in BaTiO3, but there is also
a slowly decaying state forming a loop from 2.2 eV down to
−1.0 eV emerging from the X point. These evanescent states
will also have a real part Re(kz) = 0.5 i.u. The two evanescent
states in the lowest panel of Fig. 4 also have a small decay
constant in a large energy range of the band gap and, hence,
can be relevant for tunneling. A common feature of all these
bands is their finite decay at the conduction-band edge. The flat
conduction band has such a high effective mass that it can not
contribute to any tunneling as the corresponding evanescent
states acquire a huge decay constant even at energies just
below the conduction-band edge. Hence, many more bands of
different character possibly contribute to tunneling in PbTiO3,
with their actual significance for tunneling in an actual junction

TABLE I. Lattice parameters of PbTiO3 (from Ref. 28).

In-plane lattice constant 3.895 Å

Perpendicular lattice constant 4.171 Å

Displacement of Ti 0.023 Å

Displacement of O (Ti plane) 0.062 Å

Displacement of O (Pb plane) 0.064 Å
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FIG. 4. (Color online) Complex band structure of PbTiO3. See

caption of Fig. 2 for details.

depending on the interface and the electronic structure of the
attached lead materials. However, the electronic tunneling
through these states can not be expected to be described
by the effective mass model; this model may be only applicable
to the tunneling of holes with small energy.

The main origin of the little variation of the decay
with the energy in the band gaps of BaTiO3 and PbTiO3

is the tetragonal distortion accompanying the ferroelectric
phase. In a tight-binding picture, this distortion breaks the
symmetry between the states with large hopping across the
barrier and states with hopping within planes parallel to
the barrier. As the conduction- and valence-band edges are
formed by states orientated parallel to the interface, these
states show little dispersion in the kz direction normal to
the interface and these flat bands do not contribute to the
tunneling.

IV. CONCLUSION

The most basic origin of a tunneling electroresistance
effect was discussed: the differences in the barrier height and
shape and the corresponding variation of the decay of the
wave function. While the simple description by an effective
mass model reveals a TER in cases in which the barrier
potential height is modified upon switching the polarization
state, our investigation of the complex band structure of the two
prototype ferroelectrics BaTiO3 and PbTiO3 indicated a highly
nontrivial dependence of the decay of the tunneling wave
function on the barrier potential. In BaTiO3, little variation
of the decay is expected, resulting in a very low TER. Hence,
despite its simplicity, BaTiO3 might not be the optimal choice
as a barrier material. It should be stressed, however, that our
results only describe the TER due to the intrinsic electronic
structure of the barrier. Interface effects can still give a TER in
BaTiO3-based junctions, which should be mostly independent
of the barrier thickness. The more complex situation in PbTiO3

makes it even harder to predict the magnitude of the TER in this
material. In conclusion, our results demonstrate that one should
avoid simple interpretations of tunneling through ferroelectric
barriers in terms of effective mass models or similar arguments,
as these might be completely misleading.
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Mathur, A. Barthélémy, and M. Bibes, Nature (London) 460, 81

(2009).
8V. Garcia, M. Bibes, L. Bocher, S. Valencia, F. Kronast, A. Crassous,

X. Moya, S. Enouz-Vedrenne, A. Gloter, D. Imhoff, C. Deranlot,

N. D. Mathur, S. Fusil, K. Bouzehouane, and A. Barthélémy,
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