000015214 001__ 15214
000015214 005__ 20230426083024.0
000015214 0247_ $$2DOI$$a10.1103/PhysRevB.83.174408
000015214 0247_ $$2WOS$$aWOS:000290162000002
000015214 0247_ $$2Handle$$a2128/10937
000015214 037__ $$aPreJuSER-15214
000015214 041__ $$aeng
000015214 082__ $$a530
000015214 084__ $$2WoS$$aPhysics, Condensed Matter
000015214 1001_ $$0P:(DE-HGF)0$$aSandratskii, L.M.$$b0
000015214 245__ $$aMagnetic excitations and femtomagnetism of FeRh: A first-principles study
000015214 260__ $$aCollege Park, Md.$$bAPS$$c2011
000015214 300__ $$a174408
000015214 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000015214 3367_ $$2DataCite$$aOutput Types/Journal article
000015214 3367_ $$00$$2EndNote$$aJournal Article
000015214 3367_ $$2BibTeX$$aARTICLE
000015214 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000015214 3367_ $$2DRIVER$$aarticle
000015214 440_0 $$04919$$aPhysical Review B$$v83$$x1098-0121$$y17
000015214 500__ $$3POF3_Assignment on 2016-02-29
000015214 500__ $$aRecord converted from VDB: 12.11.2012
000015214 520__ $$aThe paper is partly motivated by recent pump-probe experiments with ultrashort laser pulses on antiferromagnetic FeRh that have shown the generation of magnetization within a subpicosecond time scale. On the other hand, the physical mechanism of the thermal antiferromagnetic-ferromagnetic (AFM-FM) phase transition in FeRh, known for many decades, remains a topic of controversial discussions. The selection of the magnetic degrees of freedom as well as the treatment of the magnetic excited states differ strongly in recent models by different authors. We report a density functional theory (DFT) investigation of FeRh. For the study of excited states, DFT calculations with constraints imposed on the directions and values of the atomic moments are employed. We show that the formation of the Rh moment as a consequence of the AFM-FM phase transition cannot be described within the Stoner picture. Instead, an implicit spin splitting of the Rh states takes place in the AFM phase, resulting in the intra-atomic spin polarization of the Rh atoms. This property is a consequence of the strong hybridization between Rh and Fe states. The Fe-Rh hybridization is an important factor in the physics of FeRh. We demonstrate that the ferromagnetic Fe-Rh exchange interaction is robust with respect to the crystal volume variation, whereas the antiferromagnetic Fe-Fe exchange interaction is strongly volume dependent. These different volume dependencies of the competing exchange interactions lead to their strong compensation at certain crystal volume. We perform Monte Carlo simulations and show that the calculated thermodynamics depends on the way the magnetic degrees of freedom are selected. We argue that the excited states resulting from the variation of the value of the Rh moment treated as degree of freedom are important for both the equilibrium thermodynamics of FeRh and the femtomagnetic phenomena in this system. We also study the spin mixing caused by spin-orbit coupling. The obtained value of the Elliott-Yafet spin-mixing parameter is comparable with earlier calculations for the ferromagnetic 3d metals. We draw the conclusion that the Elliott-Yafet mechanism of the angular-momentum transfer between electrons and lattice plays an important role in the femtomagnetic properties of FeRh.
000015214 536__ $$0G:(DE-Juel1)FUEK412$$2G:(DE-HGF)$$aGrundlagen für zukünftige Informationstechnologien$$cP42$$x0
000015214 542__ $$2Crossref$$i2011-05-03$$uhttp://link.aps.org/licenses/aps-default-license
000015214 588__ $$aDataset connected to Web of Science
000015214 650_7 $$2WoSType$$aJ
000015214 7001_ $$0P:(DE-Juel1)130823$$aMavropoulos, Ph.$$b1$$uFZJ
000015214 77318 $$2Crossref$$3journal-article$$a10.1103/physrevb.83.174408$$bAmerican Physical Society (APS)$$d2011-05-03$$n17$$p174408$$tPhysical Review B$$v83$$x1098-0121$$y2011
000015214 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.83.174408$$gVol. 83, p. 174408$$n17$$p174408$$q83<174408$$tPhysical review / B$$v83$$x1098-0121$$y2011
000015214 8567_ $$uhttp://dx.doi.org/10.1103/PhysRevB.83.174408
000015214 8564_ $$uhttps://juser.fz-juelich.de/record/15214/files/PhysRevB.83.174408.pdf$$yOpenAccess
000015214 8564_ $$uhttps://juser.fz-juelich.de/record/15214/files/PhysRevB.83.174408.gif?subformat=icon$$xicon$$yOpenAccess
000015214 8564_ $$uhttps://juser.fz-juelich.de/record/15214/files/PhysRevB.83.174408.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000015214 8564_ $$uhttps://juser.fz-juelich.de/record/15214/files/PhysRevB.83.174408.jpg?subformat=icon-700$$xicon-700$$yOpenAccess
000015214 8564_ $$uhttps://juser.fz-juelich.de/record/15214/files/PhysRevB.83.174408.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000015214 909CO $$ooai:juser.fz-juelich.de:15214$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000015214 9131_ $$0G:(DE-Juel1)FUEK412$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$bSchlüsseltechnologien$$kP42$$lGrundlagen für zukünftige Informationstechnologien (FIT)$$vGrundlagen für zukünftige Informationstechnologien$$x0
000015214 9132_ $$0G:(DE-HGF)POF3-529H$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vAddenda$$x0
000015214 9141_ $$y2012
000015214 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000015214 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000015214 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000015214 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000015214 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000015214 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000015214 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000015214 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000015214 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000015214 915__ $$0StatID:(DE-HGF)1020$$2StatID$$aDBCoverage$$bCurrent Contents - Social and Behavioral Sciences
000015214 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000015214 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000015214 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$gIAS$$kIAS-1$$lQuanten-Theorie der Materialien$$x1$$zIFF-1
000015214 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$gPGI$$kPGI-1$$lQuanten-Theorie der Materialien$$x0
000015214 970__ $$aVDB:(DE-Juel1)127967
000015214 980__ $$aVDB
000015214 980__ $$aConvertedRecord
000015214 980__ $$ajournal
000015214 980__ $$aI:(DE-Juel1)IAS-1-20090406
000015214 980__ $$aI:(DE-Juel1)PGI-1-20110106
000015214 980__ $$aUNRESTRICTED
000015214 9801_ $$aFullTexts
000015214 981__ $$aI:(DE-Juel1)PGI-1-20110106
000015214 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nphys1322
000015214 999C5 $$1J. Stöhr$$2Crossref$$oJ. Stöhr Magnetism: From Fundamentals to Nanoscale Dynamics 2006$$tMagnetism: From Fundamentals to Nanoscale Dynamics$$y2006
000015214 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/22/7/076005
000015214 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.81.104425
000015214 999C5 $$1B. Koopmans$$2Crossref$$9-- missing cx lookup --$$a10.1038/nmat2593$$p259 -$$tNat. Mater.$$v9$$y2010
000015214 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.79.140401
000015214 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.97.177201
000015214 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.85.3025
000015214 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nature09070
000015214 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRev.96.266
000015214 999C5 $$1Y. Yafet$$2Crossref$$oY. Yafet Solid State Physics 1963$$tSolid State Physics$$y1963
000015214 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.105.027203
000015214 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.93.197403
000015214 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.1799244
000015214 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRev.134.A1547
000015214 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/15/5/324
000015214 999C5 $$1M. Fallot$$2Crossref$$oM. Fallot 1938$$y1938
000015214 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.46.2864
000015214 999C5 $$1J. Kübler$$2Crossref$$oJ. Kübler Theory of Itinerant Electron Magnetism 2000$$tTheory of Itinerant Electron Magnetism$$y2000
000015214 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.67.064415
000015214 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.72.012403
000015214 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1080/01411590412331316591
000015214 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRev.120.335
000015214 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0022-3719/3/1S/306
000015214 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.19.6094
000015214 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1139/p80-159
000015214 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.53.2512
000015214 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0304-8853(87)90721-9
000015214 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.64.134402
000015214 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.47.446
000015214 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.76.184406
000015214 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.1699114
000015214 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.1728721
000015214 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.78.094425
000015214 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1209/0295-5075/82/37001
000015214 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.93.077205
000015214 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.77.184401