001     15214
005     20230426083024.0
024 7 _ |a 10.1103/PhysRevB.83.174408
|2 DOI
024 7 _ |a WOS:000290162000002
|2 WOS
024 7 _ |a 2128/10937
|2 Handle
037 _ _ |a PreJuSER-15214
041 _ _ |a eng
082 _ _ |a 530
084 _ _ |2 WoS
|a Physics, Condensed Matter
100 1 _ |a Sandratskii, L.M.
|b 0
|0 P:(DE-HGF)0
245 _ _ |a Magnetic excitations and femtomagnetism of FeRh: A first-principles study
260 _ _ |a College Park, Md.
|b APS
|c 2011
300 _ _ |a 174408
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Physical Review B
|x 1098-0121
|0 4919
|y 17
|v 83
500 _ _ |3 POF3_Assignment on 2016-02-29
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a The paper is partly motivated by recent pump-probe experiments with ultrashort laser pulses on antiferromagnetic FeRh that have shown the generation of magnetization within a subpicosecond time scale. On the other hand, the physical mechanism of the thermal antiferromagnetic-ferromagnetic (AFM-FM) phase transition in FeRh, known for many decades, remains a topic of controversial discussions. The selection of the magnetic degrees of freedom as well as the treatment of the magnetic excited states differ strongly in recent models by different authors. We report a density functional theory (DFT) investigation of FeRh. For the study of excited states, DFT calculations with constraints imposed on the directions and values of the atomic moments are employed. We show that the formation of the Rh moment as a consequence of the AFM-FM phase transition cannot be described within the Stoner picture. Instead, an implicit spin splitting of the Rh states takes place in the AFM phase, resulting in the intra-atomic spin polarization of the Rh atoms. This property is a consequence of the strong hybridization between Rh and Fe states. The Fe-Rh hybridization is an important factor in the physics of FeRh. We demonstrate that the ferromagnetic Fe-Rh exchange interaction is robust with respect to the crystal volume variation, whereas the antiferromagnetic Fe-Fe exchange interaction is strongly volume dependent. These different volume dependencies of the competing exchange interactions lead to their strong compensation at certain crystal volume. We perform Monte Carlo simulations and show that the calculated thermodynamics depends on the way the magnetic degrees of freedom are selected. We argue that the excited states resulting from the variation of the value of the Rh moment treated as degree of freedom are important for both the equilibrium thermodynamics of FeRh and the femtomagnetic phenomena in this system. We also study the spin mixing caused by spin-orbit coupling. The obtained value of the Elliott-Yafet spin-mixing parameter is comparable with earlier calculations for the ferromagnetic 3d metals. We draw the conclusion that the Elliott-Yafet mechanism of the angular-momentum transfer between electrons and lattice plays an important role in the femtomagnetic properties of FeRh.
536 _ _ |a Grundlagen für zukünftige Informationstechnologien
|c P42
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK412
|x 0
542 _ _ |i 2011-05-03
|2 Crossref
|u http://link.aps.org/licenses/aps-default-license
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
700 1 _ |a Mavropoulos, Ph.
|b 1
|u FZJ
|0 P:(DE-Juel1)130823
773 1 8 |a 10.1103/physrevb.83.174408
|b American Physical Society (APS)
|d 2011-05-03
|n 17
|p 174408
|3 journal-article
|2 Crossref
|t Physical Review B
|v 83
|y 2011
|x 1098-0121
773 _ _ |a 10.1103/PhysRevB.83.174408
|g Vol. 83, p. 174408
|p 174408
|n 17
|q 83<174408
|0 PERI:(DE-600)2844160-6
|t Physical review / B
|v 83
|y 2011
|x 1098-0121
856 7 _ |u http://dx.doi.org/10.1103/PhysRevB.83.174408
856 4 _ |u https://juser.fz-juelich.de/record/15214/files/PhysRevB.83.174408.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/15214/files/PhysRevB.83.174408.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/15214/files/PhysRevB.83.174408.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/15214/files/PhysRevB.83.174408.jpg?subformat=icon-700
|x icon-700
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/15214/files/PhysRevB.83.174408.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:15214
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
913 1 _ |b Schlüsseltechnologien
|k P42
|l Grundlagen für zukünftige Informationstechnologien (FIT)
|1 G:(DE-HGF)POF2-420
|0 G:(DE-Juel1)FUEK412
|2 G:(DE-HGF)POF2-400
|v Grundlagen für zukünftige Informationstechnologien
|x 0
913 2 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-529H
|2 G:(DE-HGF)POF3-500
|v Addenda
|x 0
914 1 _ |y 2012
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1020
|2 StatID
|b Current Contents - Social and Behavioral Sciences
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |k IAS-1
|l Quanten-Theorie der Materialien
|g IAS
|z IFF-1
|0 I:(DE-Juel1)IAS-1-20090406
|x 1
920 1 _ |k PGI-1
|l Quanten-Theorie der Materialien
|g PGI
|0 I:(DE-Juel1)PGI-1-20110106
|x 0
970 _ _ |a VDB:(DE-Juel1)127967
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts
981 _ _ |a I:(DE-Juel1)PGI-1-20110106
999 C 5 |a 10.1038/nphys1322
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 J. Stöhr
|y 2006
|2 Crossref
|t Magnetism: From Fundamentals to Nanoscale Dynamics
|o J. Stöhr Magnetism: From Fundamentals to Nanoscale Dynamics 2006
999 C 5 |a 10.1088/0953-8984/22/7/076005
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.81.104425
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nmat2593
|9 -- missing cx lookup --
|1 B. Koopmans
|p 259 -
|2 Crossref
|t Nat. Mater.
|v 9
|y 2010
999 C 5 |a 10.1103/PhysRevB.79.140401
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.97.177201
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.85.3025
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nature09070
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRev.96.266
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 Y. Yafet
|y 1963
|2 Crossref
|t Solid State Physics
|o Y. Yafet Solid State Physics 1963
999 C 5 |a 10.1103/PhysRevLett.105.027203
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.93.197403
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.1799244
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRev.134.A1547
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0953-8984/15/5/324
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 M. Fallot
|y 1938
|2 Crossref
|o M. Fallot 1938
999 C 5 |a 10.1103/PhysRevB.46.2864
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 J. Kübler
|y 2000
|2 Crossref
|t Theory of Itinerant Electron Magnetism
|o J. Kübler Theory of Itinerant Electron Magnetism 2000
999 C 5 |a 10.1103/PhysRevB.67.064415
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.72.012403
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1080/01411590412331316591
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRev.120.335
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0022-3719/3/1S/306
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.19.6094
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1139/p80-159
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.53.2512
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/0304-8853(87)90721-9
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.64.134402
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.47.446
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.76.184406
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.1699114
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.1728721
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.78.094425
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1209/0295-5075/82/37001
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.93.077205
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.77.184401
|9 -- missing cx lookup --
|2 Crossref


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21