001     152159
005     20240625095030.0
024 7 _ |a 10.1103/PhysRevA.89.032314
|2 doi
024 7 _ |a 0556-2791
|2 ISSN
024 7 _ |a 1094-1622
|2 ISSN
024 7 _ |a 1050-2947
|2 ISSN
024 7 _ |a 2128/5975
|2 Handle
024 7 _ |a WOS:000333179100003
|2 WOS
024 7 _ |a altmetric:2281311
|2 altmetric
037 _ _ |a FZJ-2014-01940
082 _ _ |a 530
100 1 _ |a Tornberg, L.
|0 P:(DE-HGF)0
|b 0
|e Corresponding Author
245 _ _ |a Stochastic-master-equation analysis of optimized three-qubit nondemolition parity measurements
260 _ _ |a College Park, Md.
|c 2014
|b APS
264 _ 1 |3 online
|2 Crossref
|b American Physical Society (APS)
|c 2014-03-12
264 _ 1 |3 print
|2 Crossref
|b American Physical Society (APS)
|c 2014-03-01
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 152159
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a We analyzea direct parity measurement of the state of three superconducting qubits in circuit quantum electrodynamics. The parity is inferred from a homodyne measurement of the reflected and transmitted microwave radiation, and the measurement is direct in the sense that the parity is measured without the need for any quantum circuit operations or for ancilla qubits. Qubits are coupled to two resonant-cavity modes, allowing the steady state of the emitted radiation to satisfy the necessary conditions to act as a pointer state for the parity. However, the transient dynamics violates these conditions, and we analyze this detrimental effect and show that it can be overcome in the limit of a weak measurement signal. Our analysis shows that, with a moderate degree of postselection, it is possible to achieve postmeasurement states with fidelity of order 95%. We believe that this type of measurement could serve as a benchmark for future error correction protocols in a scalable architecture
536 _ _ |a 422 - Spin-based and quantum information (POF2-422)
|0 G:(DE-HGF)POF2-422
|c POF2-422
|f POF II
|x 0
542 _ _ |i 2014-03-12
|2 Crossref
|u http://link.aps.org/licenses/aps-default-license
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Barzanjeh, Sh.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a DiVincenzo, David
|0 P:(DE-Juel1)143759
|b 2
|u fzj
773 1 8 |a 10.1103/physreva.89.032314
|b American Physical Society (APS)
|d 2014-03-12
|n 3
|p 032314
|3 journal-article
|2 Crossref
|t Physical Review A
|v 89
|y 2014
|x 1050-2947
773 _ _ |a 10.1103/PhysRevA.89.032314
|g Vol. 89, no. 3, p. 032314
|0 PERI:(DE-600)2844156-4
|n 3
|p 032314
|t Physical review / A
|v 89
|y 2014
|x 1050-2947
856 4 _ |y Publishers version according to licensing conditions.
|z Published final document.
856 4 _ |u https://juser.fz-juelich.de/record/152159/files/FZJ-2014-01940.pdf
|y OpenAccess
|z Published final document.
856 4 _ |u https://juser.fz-juelich.de/record/152159/files/FZJ-2014-01940.jpg?subformat=icon-144
|x icon-144
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/152159/files/FZJ-2014-01940.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/152159/files/FZJ-2014-01940.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:152159
|p open_access
|p driver
|p VDB
|p openaire
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)143759
913 2 _ |a DE-HGF
|b Forschungsbereich Energie
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-144
|2 G:(DE-HGF)POF3-100
|v Controlling Collective States
|x 0
913 1 _ |a DE-HGF
|b Schlüsseltechnologien
|1 G:(DE-HGF)POF2-420
|0 G:(DE-HGF)POF2-422
|2 G:(DE-HGF)POF2-400
|v Spin-based and quantum information
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
|l Grundlagen zukünftiger Informationstechnologien
914 1 _ |y 2014
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-2-20110106
|k PGI-2
|l Theoretische Nanoelektronik
|x 0
920 1 _ |0 I:(DE-Juel1)IAS-3-20090406
|k IAS-3
|l Theoretische Nanoelektronik
|x 1
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 2
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a UNRESTRICTED
980 _ _ |a FullTexts
980 _ _ |a I:(DE-Juel1)PGI-2-20110106
980 _ _ |a I:(DE-Juel1)IAS-3-20090406
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a VDB
981 _ _ |a I:(DE-Juel1)IAS-3-20090406
999 C 5 |a 10.1103/PhysRevA.82.040305
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevA.87.030301
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nphys1400
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.109.240502
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.109.050507
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevX.3.021008
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevA.85.052318
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevA.82.012329
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 S. Bravyi
|y 2013
|2 Crossref
|o S. Bravyi 2013
999 C 5 |a 10.1103/PhysRevA.83.020302
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevA.79.024305
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevA.81.040301
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.110.243604
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/1367-2630/15/7/075001
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/978-3-642-79504-6
|1 D. Walls
|2 Crossref
|9 -- missing cx lookup --
|y 1994
999 C 5 |a 10.1103/PhysRev.69.37
|9 -- missing cx lookup --
|1 E. M. Purcell
|p 681 -
|2 Crossref
|t Phys. Rev.
|v 69
|y 1946
999 C 5 |a 10.1103/PhysRevA.69.062320
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/BF01608499
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.78.104508
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevA.74.042318
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevA.47.642
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1142/p386
|1 F. C. Klebaner
|2 Crossref
|9 -- missing cx lookup --
|y 2005
999 C 5 |a 10.1103/PhysRevA.77.012112
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 C. C. Gerry
|y 2005
|2 Crossref
|t Introductory Quantum Optics
|o C. C. Gerry Introductory Quantum Optics 2005
999 C 5 |1 M. A. Nielsen
|y 2000
|2 Crossref
|t Quantum Information and Quantum Computation
|o M. A. Nielsen Quantum Information and Quantum Computation 2000
999 C 5 |a 10.1103/PhysRevB.86.100506
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.4792698
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.4813269
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevA.88.042308
|9 -- missing cx lookup --
|2 Crossref


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21