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We analyzea direct parity measurement of the state of three superconducting qubits in circuit quantum
electrodynamics. The parity is inferred from a homodyne measurement of the reflected and transmitted microwave
radiation, and the measurement is direct in the sense that the parity is measured without the need for any
quantum circuit operations or for ancilla qubits. Qubits are coupled to two resonant-cavity modes, allowing the
steady state of the emitted radiation to satisfy the necessary conditions to act as a pointer state for the parity.
However, the transient dynamics violates these conditions, and we analyze this detrimental effect and show
that it can be overcome in the limit of a weak measurement signal. Our analysis shows that, with a moderate
degree of postselection, it is possible to achieve postmeasurement states with fidelity of order 95%. We believe
that this type of measurement could serve as a benchmark for future error correction protocols in a scalable
architecture.
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I. INTRODUCTION

It is now well established that there are many different ways
of achieving, within circuit quantum electrodynamics (QED),
the essential primitive operations for quantum information
processing. Beyond protocols for achieving highly accurate
single- [1] and two-qubit [2] gate operations, the achieve-
ment of fast, flexible, accurate quantum measurements [3]
is also essential. The current experimental emphasis on
reliable feedback of measurement data to control subsequent
quantum operations [4–6] fulfils the theoretical hope that
such capabilities will find important uses in reliable quantum
information processing [7]. In particular, the achievement of
successful fault tolerant quantum computation relies on the
implementation of adaptive gate sequences conditioned on the
results of specific kinds of quantum measurements [8], namely,
multiqubit parity measurements [9]. In a parity measurement,
the measurement outcome is to be one single bit, regardless of
the number of qubits involved. The bit should simply indicate
whether the number of ones in the set of measured qubits
is even or odd. It is essential for the proper functioning
of this measurement that no other information about the
qubits be uncovered by the measurement. Furthermore, it
is necessary, for applications in quantum error correction,
that the measurement be “quantum nondemolition” (QND);
if the state of the qubits before measurement is an eigen-
state of the measurement (i.e., is purely even or purely
odd), then the final quantum state of the qubits should be
unchanged.

In the preferred (topological) error correction code
schemes, the parity of four [8] or three [10] qubits is needed.
It has generally been assumed that this parity measurement
would be accomplished with a quantum circuit involving
one- and two-qubit gates; the parity is thus computed by
elementary logic operations, with the result stored in another
ancillary qubit. The parity measurement is then completed
by a conventional single-qubit measurement on the ancilla.

This measurement does not even have to have QND character
on the ancilla—the net result is a QND measurement on the
data qubits. Nevertheless, there are reasons for wishing to
replace this quantum circuit with a more direct procedure.
First, a direct parity measurement dispenses with the need
for extra ancilla qubits. Furthermore, the problem of the
accumulation of error is ameliorated. That is, in the circuit
approach, the net error will be the sum of the errors of each
of the quantum gates and of the single-qubit measurement.
This is no fewer than four individual operations; it is known
that for achievement of fault tolerance each of these individual
operations needs to have an error rate no larger than about
1% [11]. This means that the “all in one” operation studied
here is permitted to have a larger error rate, around 4%,
say.

Several detailed concepts for direct two-qubit parity mea-
surements have been analyzed recently [7,9,12–14], with a
number of them being promising for applications. The central
idea of these approaches is that qubits are off-resonantly (i.e.,
dispersively) coupled to a cavity mode; the frequency of the
mode is shifted by an amount dependent on the state of the
qubits, and this shift is then read out by measuring the phase of
a microwave tone either transmitted through or reflected from
the cavity.

For the most part, these earlier proposals have no straight-
forward generalization to measurement of the parity of more
than two qubits. References [12,15] indicated that a generaliza-
tion of previous schemes that would make multiqubit parity
measurement possible involves multiple resonant modes. In
particular, [15] showed that, by having just two cavity modes,
each of which is subject to qubit-state-dependent dispersive
shifts, three-qubit parity measurements become possible. The
recent proposal of Nigg and Girvin [14] is clearly extendible
to multiqubit parity measurement; by loading a cavity with
a coherent state in a precisely timed way, the state’s phase
can accumulate information about a particular subset of qubits
(with others removed by refocusing), such that the subsequent
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dispersive measurement of another ancilla qubit can give a
readout of any subset parity.

In this paper, we take up a detailed analysis of the multiqubit
parity measurement proposal of [15] using the stochastic
master equations used to represent realistic homodyne mea-
surements, as in [7,9,13]. Reference [15] developed the two-
mode concept using a completely different approach, which
involved obtaining scattering parameters from a classical
linear electrical circuit analysis, combined with an unrealistic
model of measurement in which a hypothetical von-Neumann
measurement is performed instantaneously after a coherent-
state probing pulse has completed its unitary interaction with
the system. As a part of the present work, we provide a
derivation based on input-output theory [16] of the quantum
optics of a cavity, coupled to a continuum, with two closely
spaced resonant modes.

Many of the broad features of [15] are confirmed in the
present realistic study: there exists a choice of parameters, in
which all the relevant parameters of the problem (the dispersive
coupling of qubit to cavity, the detuning of the two cavity
modes from each other, and the coupling strength of the
two modes to the continuum) are of comparable strength, for
which a successful three-qubit parity measurement is obtained.
In fact, our present analysis provides simple formulas for
the ideal setting of all these parameters. For these settings,
the steady-state statistics of the homodyne measurement are
identical for any state in one of the parity subspaces (even
or odd). The transient response, however, does distinguish
individual states, and thus degrades the fidelity of the parity
measurement. While [15] indicated that a good strategy for
dealing with these transient effects is to use a low-intensity,
weak measurement of long duration, the details of the present
optimization of the measurement in light of the transient effects
were not anticipated by the earlier analysis. Furthermore,
in the present study we consider a realistic measurement
setting in which qubit decay, determined fundamentally in
the cavity setting by the Purcell effect [17], constrains
the improvement that can be obtained by prolonging the
measurement. Our optimizations indicate that despite the
current limitations of superconducting qubit-cavity systems
parity measurements of impressive fidelity (≈95%) will be
possible, but only if we permit a moderate degree (≈50%)
of postselection to retain only those cases where the homo-
dyne measurement is most conclusive. Better performance
with the presently analyzed scheme is not precluded, but
would appear to require qubits with longer T1 and T ∗

2
times.

The paper is organized as follows. In Sec. II, we present
the model for the circuit QED system, containing two resonant
modes and three qubits. By tracing out the mode degrees of
freedom we derive an effective stochastic master equation
for the qubit dynamics. In Sec. III, we discuss the desired
properties of a parity measurement and derive the optimal
values of circuit parameters to obtain these. We define the
measures of measurement fidelity and study the effect of
measurement inefficiency in Secs. III B and IIIC, respectively.
Section IV is devoted to the study of transient effects, and a
strategy for mitigating the undesired measurement back action
is presented. In Sec. V we give the main results, and we
conclude in Sec. VI.

FIG. 1. (Color online) A possible physical realization of the
three-qubit parity measurement analyzed in this paper. This concept
uses elements from traditional optics and cavity QED; Ref. [15]
illustrates several possible realizations of the measurement using
microwave techniques, i.e., using circuit QED. Three atoms or
artificial atoms are held in space, either by trapping techniques or
by being embedded in a crystal, in the middle of a crossed-mode
double cavity. The two relevant horizontal and vertical modes are to be
slightly detuned from one another and are far detuned from the atomic
transitions, so that the cavity-atom interaction is dispersive. The two
modes are driven simultaneously with pulsed coherent radiation, the
frequency of which is in between that of the two cavity modes. Parity
information is extracted by a homodyne measurement of the reflected
field. The “fiber coupler” accomplishing the splitting and combining
can be a standard three-port component such as a symmetric Y-branch
coupler. A modification of this setup is straightforwardly possible
in which the output field emerges in transmission rather than
reflection.

II. THE SYSTEM

The system whose parity we want to measure consists of
three (artificial) atoms coupled to two fundamental modes
of a cavity (or two different cavities), which couple to a
common input and output continuum, as depicted in Fig. 1.
For simplicity, we neglect the possible influence of higher
qubit levels and approximate each atom as a two-level system.
The system is operated in the dispersive regime, where the
transition frequency �i of qubit i is far detuned from the
resonance frequency of either resonator mode ωj such that
g

j

i /|�i − ωj | � 1 where g
j

i is the coupling strength between
qubit i and mode j . In this regime the Hamiltonian, in the
rotating frame defined by the measurement-tone frequency
ωm, is given by [18]

H =
⎛
⎝�b +

3∑
j=1

χb
j σ (j )

z

⎞
⎠ b†b +

⎛
⎝�a +

3∑
j=1

χa
j σ (j )

z

⎞
⎠ a†a

+
3∑

j=1

�j + χa
j + χb

j

2
σ (j )

z + [iε(t)(
√

κaa† +
√

κbb†)

+ H.c.], (1)
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where �k = ωk − ωm (with k = a,b) are the cavity detunings,
and χk

j = (gk
j )2/�k

j (j = 1,2,3 and k = a,b) are the dispersive
coupling strengths with �k

j = ωk − �j . The amplitude of the
measurement signal is given by ε(t). The resonator modes
are described by the annihilation (creation) operators a(a†)
and b(b†). The coupling between resonator mode i and the
environment is given by κi . In the absence of measurement,
the master equation describing the system evolution is given
by

ρ̇ = −i[H,ρ] +
3∑

j=1

(
γ1j D[σ (j )

− ]ρ + γϕj

2
D[σ (j )

z ]ρ

)

+ D[
√

κaa +
√

κbb]ρ + κa

3∑
j=1

D
[
λa

jσ
(j )
−

]
ρ

+ κb

3∑
j=1

D
[
λb

jσ
(j )
−

]
ρ, (2)

where D [c] ρ = cρc† + 1/2(c†cρ + ρc†c) is a dissipation
superoperator of Lindblad form [19] and γ1j and γϕj are
the relaxation and dephasing rates, respectively, of qubit j .
The last two terms describe the Purcell relaxation [17] where
λk

j = gk
j /�

k
j (j = 1,2,3 and k = a,b) and we have assumed

distinct qubit frequencies such that |�i − �j | � κaλa
jλ

a
i ,

which allows us to neglect all cross terms between operators
belonging to different qubits. This assumption is also important
if we want to suppress the direct coupling between qubits
mediated by virtual photons [18].

In such a two-mode setting, it would be common to
also have terms in the Hamiltonian involving mode-mode
coupling, i.e., terms containing a†b. While such terms are
indeed typically nonzero, it has been shown that, using
the flexibility offered within circuit QED, circuit structures
can readily be devised where these interactions are tuned
away [20]. While such terms would not fundamentally alter
the parity measurement scheme that we analyze here, we
find that the study of the effects is more transparent with
the minimal Hamiltonian Eq. (1), which we will henceforth
employ throughout this paper.

From the point of view of the cavity degrees of freedom,
Eqs. (1) and (2) describe the generation and evolution of
coherent states, the amplitudes of which are governed by the
differential equations [21]

α̇ijk = −√
κaε − i

(
�a + χa

ijk

)
αijk − κa

2
αijk −

√
κaκb

2
βijk,

β̇ijk = −
√

κbε − i
(
�b + χb

ijk

)
βijk − κb

2
βijk −

√
κaκb

2
αijk,

(3)

such that the cavity fields are entangled with the qubit
states through the coupling χm

ijk = 〈ijk| ∑3
l=1 χm

l σ (l)
z |ijk〉,

with (m = a,b). In this way, the cavity fields act like pointer
states, which allows us to indirectly infer the state of the qubit
system through a measurement on the field.

The unconditional evolution described by Eq. (2) is suf-
ficient if one is interested in calculating average quantities

of system operators. When studying the performance of a
measurement it is, however, necessary to calculate properties
of the system conditioned on a certain subset of measurement
results. For this purpose, we need to describe the system
evolution conditioned on a single measurement result. In
circuit QED, phase sensitive amplification allows for the
equivalent of homodyne detection in optics. The system
dynamics including the measurement back action is described
by the stochastic master equation [22]

dρ = Lρdt + √
ηM[(

√
κaa +

√
κbb)e−iφ]ρdW (t), (4)

where L is the superoperator written in Eq. (2), M[c]ρ = cρ +
ρc† − 〈c + c†〉ρ is the superoperator describing the measure-
ment back action, and η is the efficiency of the measurement.
The stochastic evolution, fundamentally originating from the
collapse of the state, is realized through the Wiener process
dW (t) with the defining statistical properties E[dW (t)] = 0
and E[dW (t)2] = dt [23]. The measurement signal is given
by the homodyne current:

j (t)dt = √
η〈(√κaa +

√
κbb)e−iφ

+ (
√

κaa† +
√

κbb†)eiφ〉dt + dW (t). (5)

Equations (4) and (5) can in principle be used to numerically
study the evolution of the system and the performance of the
measurement. However, to gain qualitative understanding with
the long term goal of achieving a high fidelity measurement,
it is necessary to reduce these equations such that they
describe the evolution of the qubits’ degree of freedom
only.

A. Effective stochastic master equation of three-qubit
two-mode circuit QED

The elimination of the cavity degrees of freedom to obtain
an effective SME for the qubits has been treated in detail
in [13,24]. There the analysis was done for one and two
qubits coupled to a single cavity mode. Here we extend this
derivation to the case of more cavity modes and qubits. The
elimination of cavity degrees of freedom is carried out by
moving to a frame of reference which follows the average
cavity field, the state of which is conditioned on the state of the
qubits:

P =
∑

i,j,k=0,1

Da(αijk)Db(βijk)�ijk, (6)

where α and β are the coherent amplitudes of cavity modes
a and b, respectively, and Dc(γ ) = exp(γ c† − γ ∗c) is the
displacement operator with respect to each cavity field [25].
�ijk = |ijk〉〈ijk| are projection operators onto the basis states
of the three-qubit Hilbert space. The field dynamics in this
frame of reference is given by the vacuum fluctuations only,
and in the limit γ1j � κi we can trace out the photonic states,
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yielding the effective master equation

dρ = −i

⎡
⎣ 3∑

j=1

ωatom
j + χa

j + χb
j

2
σ (j )

z ,ρ

⎤
⎦ dt +

⎛
⎝ 3∑

j=1

γ1j D[σ (j )
− ] + γϕj

2
D

[
σ (j )

z

] + κaD
[
λa

jσ
(j )
−

] + κbD
[
λb

jσ
(j )
−

]⎞⎠ ρdt

+
∑

ijk,lmn

(
χa

lmn,ijk[Im(α∗
ijkαlmn) + iRe(α∗

ijkαlmn)]
)
�ijkρ�lmndt

+
∑

ijk,lmn

(
χb

lmn,ijk[Im(β∗
ijkβlmn) + iRe(β∗

ijkβlmn)]
)
�ijkρ�lmndt

+ i

√
κaκb

2

∑
i 	=l

∑
j 	=m

∑
k 	=n

[Im(αijkβ
∗
lmn) + Im(βijkα

∗
lmn)]�ijkρ�lmndt

+
√

κaκb

2

∑
i 	=l

∑
j 	=m

∑
k 	=n

[Re(βijkα
∗
lmn) + Re(αijkβ

∗
lmn) − Re(α∗

ijkβijk) − Re(α∗
lmnβlmn)]�ijkρ�lmndt

+√
ηM[��e−iφ]ρdW (t), (7)

where χm
ijk,lmn = χm

ijk − χm
lmn (with m = a,b). Here, we introduce the short-hand measurement operator �� = ∑

i,j,k �ijk�ijk ,

where �ijk = √
κaαijk +

√
κbβijk is the linear combination of the cavity fields visible through the connection port. In addition

to the system dynamics, the homodyne current can also be expressed in terms of the qubits’ degrees of freedom:

j (t)dt = √
η
〈
��e−iφ + �

†
�eiφ

〉
dt + dW (t). (8)

III. PARITY MEASUREMENT

The goal of an experimental setup as in Fig. 1 is to realize a parity measurement of the joint state of the three qubits; that is,
we would like the measurement to distinguish between states belonging to the mutually orthogonal subspaces

H+ = span(|000〉,|011〉,|101〉,|110〉),
(9)

H− = span(|001〉,|010〉,|100〉,|111〉),
without distinguishing between different states within H+ and H−. In addition to this, the measurement should not cause any
back action on the measured state apart from the necessary state collapse associated with the gain of information. To realize these
properties, the dynamics of the pointer states, together with the chosen measurement basis, must reflect these constraints. In this
section we therefore study the evolution given in Eq. (3) to obtain a choice of system parameter values such that these conditions
are fulfilled. We start by analyzing the steady-state solution to Eq. (3), given by

�SS
ijk = −2εSS

�aκb + �bκa + (κa + κb)χijk

�b(κa + κb) + �a[κb + 2i(�b + χijk)] + χijk(κa + κb + 2iχijk)
≡ CijkεSS, (10)

where εSS is the steady-state amplitude of the drive and Cijk

is a constant which only depends on circuit parameters. Here,
the subscripts ijk again refer to the qubit eigenstate |ijk〉 and
we will from now on assume that χijk = χ is the same for all
i,j,k, which can be achieved by proper choices of the coupling
energies g

j

i . In the following we assume the LO phase to be
φ = π/2 corresponding to a measurement of the imaginary
part of the output field Im(�ijk). In order to reduce the com-
plexity of the analysis we limit the number of free parameters
by assuming that �a = −�b and κa = κb. In Fig. 2(a) we plot
Im(�)/ε as a function of the remaining free parameters κa and
�a . Each surface corresponds to one of the four distinct values
of χijk = {−3,−1,1,3}χ which is set by the three-qubit basis
states. The blue (red) surfaces show the negative (positive)
parity solution corresponding to χijk = {−1,3}({1,−3})χ . The
intersection between the planes, shown by the blue and red
lines on the base of the figure, gives the set of parameter values

for which Im(�000) = Im(�011) = Im(�101) = Im(�110) =
�+ and Im(�111) = Im(�001) = Im(�100) = Im(�010) = �−
such that the states within each subspace cannot be distin-
guished. As a crucial property, the indicated set of solutions has
a symmetry relating the positive and negative parity subspaces.
At the same time, �+ 	= �−, which allows the measurement
to distinguish the two subspaces.

In addition to the conditions imposed by the measurement
which are satisfied by the solutions in the blue branch, the
solutions in the red branch satisfy the condition that the real
parts of the fields also are the same. As discussed in Sec. III C,
any difference between the pointer states not recorded by the
measurement will result in measurement-induced dephasing,
so that it is crucial to equate these real parts if we want no
additional back action generated by the measurement. We
therefore expect, and numerically find, that deviating from the
red dashed branch decreases the fidelity of the measurement.
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FIG. 2. (Color online) The pointer states of measurement. (a) The steady-state solution, �SS
ijk , to Eq. (10) as a function of κa = κb and

�a = −�b. The blue (red) surfaces show the solution for the negative (positive) parity subspace. The intersection between the planes is
indicated below the solution (see text for details). The (optimal) black point shows κa = κb = 2χ and �a = −�b = √

3χ . (b) The time
evolution of the pointer states of the detected field �ijk(t) for the eigenstates |000〉 (solid red), |011〉 (dashed red), |111〉 (solid blue), and |001〉
(dashed blue) of the three-qubit system. The steady state of the system allows for a perfect parity measurement, while the different transient
trajectories result in an undesirable distinguishability within each subspace. The parameters are ε0 = √

χ , κa = κb = 2χ , �a = −�b = √
3χ ,

and σ = 10χ .

The indicated point in Fig. 2(a) shows the specific choice of
parameters used in all numerical simulations, which we return
to in Sec. V. We have numerically verified that changing the
values along the red line has only a negligible effect on the
fidelity.

The above study has allowed us to extract the right
parameter values to achieve the desired properties of the
pointer states in the steady state. Equipped with this knowledge
we now return to the full solution to Eq. (3). In Fig. 2(a), we
plot this as trajectories in the In-Phase and Quadrature (IQ)
plane with a pulse shape given by

ε(t) = εSS

π

(
arctan [σ (t − ton)] + π

2

)
. (11)

As expected, the steady state of the solution satisfies the
condition that Im(�ijk) is the same for states of the same
parity whereas �+ 	= �−. Unfortunately this condition is only
valid for the steady state while the transient path taken from the
vacuum to the steady state is such that �000 and the fields in the
set {�011,�101,�110} can be distinguished by the measurement
(as with the pointer states corresponding to states in H−). This
will cause a partial measurement within H± during this period
and therefore decrease the fidelity of the postmeasurement
state. This is the main source of infidelity of the proposed
measurement scheme and the remaining part of the paper is
devoted to the study of how to best mitigate this.

A. Measurement rates

As discussed above, whenever the measurement is able to
distinguish different pointer states from each other, it will give
rise to back action on the qubits. We can quantify the strength
of this back action by considering all the measurement rates
and how they correspond to the magnitude of the difference
between pointer states. For the specific choice of LO phase
made above (φ = π/2), the measurement superoperator in

Eq. (7) can be separated into four parts:

M[−i��]ρ = Im[ξ (t)]

2
M[�+ − �−]ρ

+ Im[δ(t)]

2
M[�000 − �011 − �101 − �110]ρ

− Im[δ(t)]

2
M[�111 − �001 − �010 − �100]ρ

− i
Re[δ(t)]

2
[�000 + �111 − �001 − �010

−�011 − �100 − �101 − �110,ρ], (12)

where we have defined the sum and difference fields ξ (t) ≡
�000(t) + �011(t) and δ(t) ≡ �000(t) − �011(t) and used the
specific symmetries of the pointer states, e.g., Im(�000) =
−Im(�111). The operators �± = ∑

ijk∈H± |ijk〉 〈 ijk| are pro-
jection operators on H±. The first term in Eq. (12) represents
the gain of information about the parity of the state as expected
from the measurement. Hence, we define a parity measurement
rate:

�P
m(t) = ηIm[ξ (t)]2. (13)

The next two terms arise from the fact that the pointer states
within each parity subspace are not identical, resulting in an
undesired measurement within each subspace. This intraparity
subspace measurement rate is given by

�IP
m (t) = ηIm[δ(t)]2. (14)

The last term gives a stochastic rotation of the phase in
the coherences between the subspaces span((|000〉,|111〉)
and span((|001〉,|010〉,|100〉,|011〉,|101〉,|110〉), an effect that
does not affect the purity of the postmeasurement state for
a single measurement. It will, however, affect the purity
of the average state. This effect could be canceled by
the use of feedback and poses no fundamental limitation
on the measurement fidelity. This cannot, however, be said for
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the unwanted intraparity measurements. Since the two effects
are both ∝δ(t)2, it is clear that we need to make δ(t) as small
as possible to get a measurement with high fidelity. We return
to this issue in Sec. IV.

B. Measurement fidelity—two-outcome
vs three-outcome measurement

In this section we introduce two measures used to assess
the fidelity of the measurement: the signal to noise ratio
(SNR) and the overlap fidelity of the postmeasurement state
relative to the premeasurement state. The SNR quantifies
the distinguishability between signals conditioned on states
with different parity, while the overlap fidelity measures the
undesired back action the measurement has by comparing the
real postmeasurement state to the ideal one.

To convert the time-dependent current into a single mea-
surement outcome we use the integrated current

sj (t)(τ ) =
∫ τ

0
j (t)dt (15)

as our single (real-valued) measurement result. Here the
measurement time is given by τ .

We will consider two possible approaches to further
interpreting this real-valued outcome as a discrete-valued
measurement. Ideally, the integrated measurement outcome
has an unambiguous sign; for some of the measurement
parameters considered below, this is in fact the case. Under
these circumstances, it is satisfactory to infer a parity directly
from the measurement: s > 0 meaning even parity and s <

0 meaning odd parity. However, we find that to improve
the intrasector overlap fidelity it is important to consider
measurement parameters that result in a significant number
of outcomes with s ≈ 0. In this case, it is natural to introduce
a finite “conclusiveness threshold” sth. That is, in addition to
assigning outcome “even” if s > sth and “odd” if s < −sth, we
call the measurement “inconclusive” if |s| < sth. A high value
of sth allows the observer to discard measurement results that
would otherwise lead to a corrupted postmeasurement state
due to mixing of states with different parity. We will see that
allowing a moderate percentage of “inconclusive” assignments
permits the even or odd overlap fidelity to be dramatically
improved in the successful cases. Depending on the objective
of the measurement, different choices of this threshold will be
appropriate, as we discuss further in the Conclusions.

For each state |ijk〉 the current in Eq. (8) is given by

jijk(t)dt = 2
√

ηIm[�ijk(t)]dt + dW (t), (16)

which, by the linearity of quantum mechanics, gives the current
from a general state in H±: |ψ±〉 = ∑

ijk∈H± γijk |ijk〉:

j±(t)dt ≈ 2
√

η
∑

ijk∈H±

|γijk|2Im[�ijk(t)]dt + dW (t), (17)

where we have assumed that the coefficients γijk are unaltered
during the measurement; that is, we assume that the transients
have negligible effect on the postmeasurement state. This
assumption can be justified if we consider most of the signal
to be generated in the steady state. In the weak-measurement
limit discussed in Sec. IV, this is a fair assumption.

Given a current, j±(t), conditioned on a state in H±, we
define the SNR to be the ratio between the mean and standard
deviation of the difference sj+ (τ ) − sj− (τ ):

SNR(τ ) = E[sj+(τ )] − E[sj−(τ )]√
Var[sj+(τ )] + Var[sj−(τ )]

= E[sj+(τ )] − E[sj−(τ )]√
2τ

, (18)

where we have dropped the time argument in j±(t) for
notational transparency and used the statistical properties
of the Wiener process in the second equality. Within the
assumptions made above, the SNR is given by

SNR(τ ) =
√

2η

τ

∫ τ

0

⎛
⎝ ∑

ijk∈H+

|γijk|2Im[�ijk(t)]

−
∑

ijk∈H−

|γijk|2Im[�ijk(t)]

⎞
⎠ dt, (19)

which can be further approximated if we assume that the
fraction of the measurement time spent in the transient region
is negligible, τ � 1/κ , that is, we make the replacement
�ijk → CijkεSS:

SNR ≈ 2
√

2
√

ηIm(C111)εSS
√

τ , (20)

where we recall the definition of Cijk below Eq. (10). As
expected, the fact that SNR∝εSS

√
τ shows that SNR � 1

can be achieved for an arbitrarily low value of measurement
strength εSS. We will further explore this limit in Sec. IV when
studying the effect of field transients.
If one is interested in only measuring the parity of the
state it is enough to have SNR � 1 for the measurement
to be considered high fidelity. A good example of such
a standard high-fidelity quantum measurement is photon
detection using high-fidelity avalanche diodes. Here, however,
the photon is completely destroyed in the process. In a quantum
informational setting, the postmeasurement state is often to
be further processed in some algorithm or error correction
scheme. In this case it is crucial that the postmeasurement state
conditioned on the outcome of the detection is the expected
one. As a measure of this we consider the overlap fidelity

F± =
√

〈 ψ±| E±[ρ] |ψ±〉, (21)

where |ψ±〉 is the expected postmeasurement state and E±[ρ] is
the ensemble averaged postmeasurement state where the mean
is taken over states assigned to either H± by the measurement.

C. Measurement efficiency

The quantum efficiency, η, quantifies how much of the
information, which is flowing out of the system, is actually
measured. Given a pure initial state and a quantum limited
measurement, that is, no additional back action apart from the
necessary state collapse, with η = 1 the projection postulate
ensures that the postmeasurement state is pure. For η < 1
this is in general no longer true since the observer must
average over the nonobserved measurement results to obtain
the postmeasurement state. This procedure is the origin of
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FIG. 3. (Color online) The effect of measurement efficiency, showing histograms of 1000 measurement results corresponding to the
premeasurement state in Eq. (22). The parameters are as in Fig. 2 with γ1j = γϕj = γp = 0. The measurement time and drive strength are
chosen to be τ = 20/(ηχ ), εSS = 2

√
χ/20 corresponding to SNR = 4

√
2 in both cases. (a and b) Results for η = 1 and 0.5, respectively. The

red curves are normal distributions with mean and variance defined in Eq. (25). The values of F± are given above each figure.

measurement induced dephasing and lowers the fidelity of the
measurement in the sense of Eq. (21). In Fig. 3, we plot the
histograms corresponding to 1000 measurement results for
η = 0.5 and 1. In both cases the initial state is given by

|ψ〉pre = 1√
8

∑
ijk

|ijk〉 , (22)

which for a perfect parity measurement would be projected
onto the postmeasurement states

|ψ〉+ = 1√
4

(|000〉 + |011〉 + |101〉 + |110〉) ,

(23)
|ψ〉− = 1√

4
(|001〉 + |010〉 + |100〉 + |111〉) ,

with equal probability. While confining our attention to this
initial state does not explore all aspects of the measurement
superoperator, it is optimally sensitive to any loss of intrasector
coherence during the measurement, and it is a state with a
structure, with its equal superposition of qubit basis states,
resembling that of the important stabilizer states of quantum
error correction [26].

The measurement drive strength εSS is kept the same for
the two cases in Fig. 3. The SNR is also held at a constant
value by increasing the measurement time to compensate for
the lower value of η. Since we are interested in the effect
of lowering η, we ignore the effect of decoherence, that is,
γ1j = γϕj = γp = 0 where

γp = (g/�)2(κa + κb) (24)

is the Purcell decay rate. The red curves in Fig. 4 are normal
distributions with mean and variance

E[s±(τ )] = ∓2
√

η

∫ τ

0

1

4
Im [�000(t) + 3�011(t)] dt,

Var[s±(τ )] = √
τ . (25)

From the overlap fidelity, it is clear that the purity of the state is
not affected by the decrease in η. This robustness comes from
the fact that the pointer states corresponding to states within

H± are perfectly indistinguishable in the steady state. Hence
there are no unrecorded measurement results to average over
and the state remains pure. The fact that F± < 1 is an effect
of the transient evolution of the pointer states, which is not
affected by the measurement efficiency. Note, however, that in
the presence of decoherence the measurement efficiency will
have an indirect effect on F± through the longer measurement
times needed to keep SNR high.

IV. EFFECT OF FIELD TRANSIENTS

It is clear that the integrated rate �IP
m (t) of Eq. (14) (total

effect on the state) must be minimized to limit the unwanted
effect due to the transient behavior of the pointer states. To
realize this we make the observation that δ(t) → 0 when
εSS → 0. This is also true for ξ (t) and the measurement
will therefore be weak in this sense. The measurement
can, however, still be strong in the sense that the SNR
defining product εSS

√
τ can be kept constant by increasing

the measurement time such that the value of this product
is kept constant as εSS → 0. In the absence of decoherence
mechanisms, we can keep the measurement on for as long
as we want, and in this way realize a strong measurement
while mitigating the effect of the unwanted back action. In
Fig. 4, we plot the histograms of 1000 measurement results
for two different values of εSS and

√
τ such that εSS

√
τ = 2

but varying τ .
The initial state is given in Eq. (22) and, since we want

to single out the detrimental effect of the field transients, we
ignore the effect of decoherence, that is, γ1j = γϕj = γp = 0.
The histograms in Fig. 4 show comparable overlap for the
different measurement strengths, but the overlap fidelity is
near unity for the long measurement time τ = 100/χ while
being significantly lower for the shorter measurement time τ =
10/χ . This clearly shows that, in the limit of long measurement
time, that is, weak measurement pulse, the setup considered
here makes for a perfect parity measurement. Although the
SNR defining product εSS

√
τ is chosen to be identical for

both measurement times, we note that this only estimates the
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FIG. 4. (Color online) The effect of transients, showing histograms of 1000 measurement results corresponding to the premeasurement
state in Eq. (22) and SNR = 4

√
2. The parameters are as in Fig. 2 with γ1j = γϕj = γp = 0. (a and b) Measurement results for short, τ = 10/χ ,

and long, τ = 100/χ , measurement time, respectively, and εSS = 2/
√

τ . The red curves are normal distributions with mean and variance
defined in Eq. (25). The values of F± are given above each figure.

SNR accurately if all of the measurement takes place in the
steady state. For τ = 10/χ , we are approaching the limit where
the transient behavior makes up a non-negligible part of the
measurement duration, leading to lower SNR.

Another way to possibly enhance the measurement fidelity
is to have the measurement pulse ε(t) turned on slowly
compared to all the other time scales in the system. This allows
the pointer states to approximately follow the paths given by
their instantaneous steady-state value. We consider the pulse
shape given Eq. (11) and plot |Im[δ(t)]| in Fig. 5(a) for a large
range of rise times 1/σ . As expected, the sharper the onset
of ε(t) is, the bigger the difference δ(t) becomes between the
pointer states in the same parity subspace. Making the pulse
smoother in time decreases this difference but simultaneously
spreads it over a larger time. To quantify the effect of this
tradeoff, we plot the integrated value of Im[δ(t)] in Fig. 5(b).
We see that the difference is negligible over a large range of σ .
We can therefore safely say that the measurement time will not
be limited by any adiabaticity constraints and, in the remainder

of this work, we focus on the effect of long measurement time
as described in the beginning of this section.

V. RESULTS FOR OPTIMAL MEASUREMENT

So far all the results have been derived without considering
the detrimental effect of decoherence, which is inevitably
present due to coupling of the cavity modes to the continuum.
From the analysis so far it is, however, evident that, for the
measurement to be high fidelity, we need a long measurement
time such that εSS

√
τ � 1 and εSS → 0, but increasing τ

indefinitely is not possible in the presence of qubit decay
mechanisms. Thus, there exists an optimal measurement time
τopt, which we will identify below, for which the two competing
effects of transients and qubit relaxation balance one another.
In this optimization for τopt we will fix the SNR given in
Eq. (20) at a desired value and calculate the measurement
record and postmeasurement state for different measurement
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FIG. 5. (Color online) (a) The drive pulse ε(t) for different values of rise time σ and the corresponding difference Im[δ(t)]. (b) The
integrated difference for a large range of rise times σ . The effect is on the order of a few percent. The pulse shape is given in Eq. (11).
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FIG. 6. (Color online) Measurement results for η = 1 without decoherence, compared with the simple Purcell model. (a–c) Histograms
of the measurement results s(τ ) with a fixed SNR = 2

√
2. (d) Plot of the overlap fidelity as a function of measurement time (overlapping

solid blue and red) along with the fraction of accepted results (red stem). The overlapping blue and red dashed lines show F± in the absence
of measurement, including the effect of decoherence, with γp = χ/400 and γϕ = χ/300. (e) Plot of F± as a function of sth for τ = 10/χ .
(f) Corresponding fraction of accepted measurement results.

times. Note that the actual calculated SNR will differ from the
estimate that we used to fix the relationship between time and
drive strength. This is due to the fact that the expression in
Eq. (20) is an idealization—decoherence will cause additional
dynamics not accounted for in that analysis.

In Fig. 6 we plot the integrated measurement record and the
overlap fidelity of the corresponding postmeasurement state
for a relatively small SNR = 2

√
2. The initial state is given in

Eq. (22). Here we have not included any decoherence effects
but the objective is rather to see how good the measurement
can be in the absence of imperfections, just taking into account
the effect of field transients. Each histogram in Figs. 6(a)–6(c)
shows the measurement results for 1000 simulated trajectories.
In Fig. 6(d), we plot the overlap fidelities F±, which are
essentially identical for even and odd parities, along with the
fraction of conclusive measurement results (even plus odd)
for sth = 5. As the measurement time is increased, the fidelity
approaches unity, yielding a perfect parity measurement. The
fraction of accepted measurement results also increases with
τ as the SNR approaches that of Eq. (20).

The dashed lines in Fig. 6(d) (essentially identical for even
and odd) are the overlap fidelities without measurement, only
including the effect of decoherence. Here, the initial states are
given by |ψ±〉. These lines give a benchmark for how fast we
need to perform the measurement in order to not be limited by
decoherence. Here, we choose the Purcell rate γp = χ/400 and
dephasing γϕ = χ/300 such that if χ = 1 MHz the relaxation
rate and decoherence rate would be T1 = 1/γp = 400 μs
and T ∗

2 = 1/(γp/2 + γϕ) = 218 μs, respectively. Such a value

for γϕ has been obtained in three-dimensional circuit QED
architectures [27], while the value of γp is approximately four
times smaller than current state-of-the-art experimental values
(note that we have included all contributions to relaxation
into γp for simplicity). We believe that, with the ongoing
experimental progress in improving these numbers [28,29],
numbers like the above should be possible in the near future.
It should be noted that any application with the need for
multiple qubits would place similar requirements on longer
qubit lifetimes. For this choice of parameter values, we see
that the measurement time needs to be τ � 10/χ since, for
larger times, the measurement is limited by decoherence.

In Fig. 6(e) we plot F± as a function of sth for a measurement
time of τ = 10/χ . By discarding measurement results (i.e.,
labeling them inconclusive), we can increase the conditional
fidelity of the postmeasurement state up to >98%. Note that
for sth > 10 the number of accepted measurement results are
too few to allow good statistics, hence the increase in variance
of F±. The decreasing fraction of accepted results as a function
of sth is plotted in Fig. 6(c). Note that we can get estimates for
the physical parameters implied by these parameter settings:
ignoring the distinction between different modes and different
qubits, we get, using Eq. (24) and the standard dispersive
relation χ = g2/�,

� = 4χ2/γp, g =
√

4χ3/γp. (26)

This gives numerical values � = 1.6 GHz and g = 40 MHz.
We see that a large value of detuning, combined with a
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FIG. 7. (Color online) Measurement results with decoherence. (a–c) Histograms of the measurement results s(τ ) with a fixed SNR = 2
√

2.
(d) Plot of the overlap fidelity as a function of measurement time (overlapping solid blue and red) along with the fraction of accepted results
(red stem). The overlapping blue and red dashed lines show F± in the absence of measurement, including the effect of decoherence. (e) Plot
of F± as a function of sth for τ = 10/χ . (f) Corresponding fraction of accepted measurement results. The parameters are as in Fig. 2 with
γp = χ/400, γϕ = χ/300, and η = 1.

moderate value of the qubit-cavity coupling constant g, gives
the best measurement. Note that in order to avoid direct
qubit-qubit coupling, the detuning � should be different from
one qubit to the other by, say, hundreds of MHz, with the
g’s correspondingly adjusted so that the χ parameters are all
equal.

In Fig. 7 we plot the same quantities as in Fig. 6 but with
decoherence included. The peaks in the histograms are less
separated than in Fig. 6 since the Purcell decay mixes the
different parity subspaces. The overlap fidelity in Fig. 7(d)
follows the fidelity set by the decoherence in the absence of
measurement (dashed lines). We observe that the fidelity is
actually slightly better with the measurement on, which we
can understand as a type of Zeno effect. Since the Purcell
relaxation is dominated by single qubit bit-flip errors, and
these also change the parity of the state, the measurement
partly protects the state from the dominant decay process
with higher fidelity as a consequence. From Fig. 7(d) we see
that a postmeasurement overlap fidelity of ∼90% is possible,
which can be increased to ∼95% provided that ∼60% of the
measurement results are labeled as inconclusive.

VI. CONCLUSIONS

In conclusion, we have performed an analysis of a three-
qubit parity measurement in a circuit-QED setup where the
joint states of two single mode resonances are used as pointer
states of the measurement. We find that the measurement
fidelity is limited by the transient dynamics of these pointer

states and show that this limitation, in the absence of other
decoherence mechanisms, can be overcome by the use of a
weak probe signal. In this limit we can still obtain a high
signal-to-noise ratio due to the fact that the steady state of
the pointer states perfectly fulfills the conditions of a parity
measurement, and the weak probe can thus be compensated
by a longer measurement time. In the presence of additional
decay, this strategy breaks down, but we show that, with
realistic numbers for the decoherence, we can obtain a state
fidelity of ∼95% for the postmeasurement state provided that
we throw away ∼60% of the measurement results.

The sort of measurement described here has direct appli-
cation to the implementation of fault tolerant quantum com-
putation using topological error correction codes employing
three-qubit checks in the code of [10], or the analogous
four-qubit parity checks in the surface code [8]. When such ap-
plications are attempted, it is clear that very different statistical
considerations would be brought to bear in the interpretation
of the measurement results. In such error correction, there is
an “error free” state of fixed parity, and the measurement is
expected to give this outcome a large majority of the time. At
a minimum, this would, on account of Bayesian reasoning,
move the threshold sth away from its symmetric setting.
Furthermore, there would never be any reason to interpret
any measurement outcome as 100% conclusive, since optimal
corrective actions will be inferred from a large amount of
measurement data of varying degrees of certainty. Finally, the
correlation of measurement outcome s with the overlap fidelity
F changes the interpretation of subsequent error syndrome
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measurements, because a departure of F from unity implies
a degradation of the multiqubit state which will be expected
to show up as an erroneous parity outcome in the conjugate
basis, which is needed on overlapping clusters of qubits in
the surface code. More research will be needed to determine
what measurement SNRs and fidelities are needed for the
topological error correction to be successful.

Of course, there are further problems that are untouched
by the present analysis; most real qubits have more than two
quantum levels, which requires an extension of the present
analysis and brings in the possibility of leakage out of the
computational space. It is only beginning to be understood how
to effectively deal with leakage-type errors in surface-code
error correction [30]. Nevertheless, the fact that there is

no fundamental limitation to the fidelity of the proposed
measurement scheme indicates that as qubits with yet longer
decoherence times become available our circuit QED-based
measurement schemes will become a prime tool for the preser-
vation and control of complex quantum-computational states.
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