001     15218
005     20180208194839.0
024 7 _ |2 DOI
|a 10.1002/adfm.201001325
024 7 _ |2 WOS
|a WOS:000289209700002
037 _ _ |a PreJuSER-15218
041 _ _ |a eng
082 _ _ |a 620
084 _ _ |2 WoS
|a Chemistry, Multidisciplinary
084 _ _ |2 WoS
|a Chemistry, Physical
084 _ _ |2 WoS
|a Nanoscience & Nanotechnology
084 _ _ |2 WoS
|a Materials Science, Multidisciplinary
084 _ _ |2 WoS
|a Physics, Applied
084 _ _ |2 WoS
|a Physics, Condensed Matter
100 1 _ |0 P:(DE-HGF)0
|a Carbone, C.
|b 0
245 _ _ |a Self-Assembled Nanometer-Scale Magnetic Networks on Surfaces: Fundamental Interactions and Functional Properties
260 _ _ |a Weinheim
|b Wiley-VCH
|c 2011
300 _ _ |a 1212 - 1228
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |0 16181
|a Advanced Functional Materials
|v 21
|x 1616-301X
|y 7
500 _ _ |3 POF3_Assignment on 2016-02-29
500 _ _ |a We acknowledge support from the European Science Foundation (EUROCORES Programme SONS under contract N.ERAS-CT-2003-980409) and the respective national science fundations. S.V. has been supported by the Swiss National Science Fundation (129934). S.S., C.K., T.B., A.M., and P. G. have been supported by the Spanish Ministerio de Ciencia e Innovacion (MAT2007-62341), the Catalan Agencia de Gestio d'Ajuts Universitaris i de Recerca (2009 SGR 695), and the European Research Council (StG 203239 NOMAD). A.E. is supported by NSF grants DMR-0747704 and DRM-0213808. Provision of beamtime and experimental support from the European Synchrotron Radiation Facility is gratefully acknowledged. This article is part of a Special Issue on Multiscale Self-Organization of Functional Nanostructures.
520 _ _ |a Nanomagnets of controlled size, organized into regular patterns open new perspectives in the fields of nanoelectronics, spintronics, and quantum computation. Self-assembling processes on various types of substrates allow designing fine-structured architectures and tuning of their magnetic properties. Here, starting from a description of fundamental magnetic interactions at the nanoscale, we review recent experimental approaches to fabricate zero-, one-, and two-dimensional magnetic particle arrays with dimensions reduced to the atomic limit and unprecedented areal density. We describe systems composed of individual magnetic atoms, metal-organic networks, metal wires, and bimetallic particles, as well as strategies to control their magnetic moment, anisotropy, and temperature-dependent magnetic behavior. The investigation of self-assembled subnanometer magnetic particles leads to significant progress in the design of fundamental and functional aspects, mutual interactions among the magnetic units, and their coupling with the environment.
536 _ _ |0 G:(DE-Juel1)FUEK412
|2 G:(DE-HGF)
|a Grundlagen für zukünftige Informationstechnologien
|c P42
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |2 WoSType
|a J
700 1 _ |0 P:(DE-HGF)0
|a Gardonio, S.
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Moras, P.
|b 2
700 1 _ |0 P:(DE-Juel1)VDB37196
|a Lounis, S.
|b 3
|u FZJ
700 1 _ |0 P:(DE-HGF)0
|a Heide, M.
|b 4
700 1 _ |0 P:(DE-Juel1)130545
|a Bihlmayer, G.
|b 5
|u FZJ
700 1 _ |0 P:(DE-Juel1)130513
|a Atodiresei, N.
|b 6
|u FZJ
700 1 _ |0 P:(DE-Juel1)130612
|a Dederichs, P. H.
|b 7
|u FZJ
700 1 _ |0 P:(DE-Juel1)130548
|a Blügel, S.
|b 8
|u FZJ
700 1 _ |0 P:(DE-HGF)0
|a Vlaic, S.
|b 9
700 1 _ |0 P:(DE-HGF)0
|a Lehnert, A.
|b 10
700 1 _ |0 P:(DE-HGF)0
|a Ouazi, S.
|b 11
700 1 _ |0 P:(DE-HGF)0
|a Rusponi, S.
|b 12
700 1 _ |0 P:(DE-HGF)0
|a Brune, H.
|b 13
700 1 _ |0 P:(DE-HGF)0
|a Honolka, J.
|b 14
700 1 _ |0 P:(DE-HGF)0
|a Enders, A.
|b 15
700 1 _ |0 P:(DE-HGF)0
|a Kern, K.
|b 16
700 1 _ |0 P:(DE-HGF)0
|a Stepanow, S.
|b 17
700 1 _ |0 P:(DE-HGF)0
|a Krull, C.
|b 18
700 1 _ |0 P:(DE-HGF)0
|a Balashov, T.
|b 19
700 1 _ |0 P:(DE-HGF)0
|a Mugarza, A.
|b 20
700 1 _ |0 P:(DE-HGF)0
|a Gambardella, P.
|b 21
773 _ _ |0 PERI:(DE-600)2039420-2
|a 10.1002/adfm.201001325
|g Vol. 21, p. 1212 - 1228
|p 1212 - 1228
|q 21<1212 - 1228
|t Advanced functional materials
|v 21
|x 1616-301X
|y 2011
856 7 _ |u http://dx.doi.org/10.1002/adfm.201001325
909 C O |o oai:juser.fz-juelich.de:15218
|p VDB
913 1 _ |0 G:(DE-Juel1)FUEK412
|a DE-HGF
|b Schlüsseltechnologien
|k P42
|l Grundlagen für zukünftige Informationstechnologien (FIT)
|v Grundlagen für zukünftige Informationstechnologien
|x 0
913 2 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-529H
|2 G:(DE-HGF)POF3-500
|v Addenda
|x 0
914 1 _ |y 2011
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |g IAS
|k IAS-1
|l Quanten-Theorie der Materialien
|0 I:(DE-Juel1)IAS-1-20090406
|x 1
|z IFF-1
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|g PGI
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l Jülich-Aachen Research Alliance - Fundamentals of Future Information Technology
|g JARA
|x 2
920 1 _ |0 I:(DE-Juel1)VDB1045
|k JARA-SIM
|l Jülich-Aachen Research Alliance - Simulation Sciences
|g JARA
|x 3
920 1 _ |0 I:(DE-Juel1)PGI-2-20110106
|k PGI-2
|l Theoretische Nanoelektronik
|g PGI
|x 4
970 _ _ |a VDB:(DE-Juel1)127971
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-Juel1)VDB1045
980 _ _ |a I:(DE-Juel1)PGI-2-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)PGI-1-20110106
981 _ _ |a I:(DE-Juel1)VDB1045
981 _ _ |a I:(DE-Juel1)PGI-2-20110106
981 _ _ |a I:(DE-Juel1)VDB881


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21