000152350 001__ 152350
000152350 005__ 20240610121021.0
000152350 0247_ $$2WOS$$aWOS:000335205400001
000152350 037__ $$aFZJ-2014-01963
000152350 082__ $$a510
000152350 1001_ $$0P:(DE-HGF)0$$aHarris, R. J.$$b0$$eCorresponding Author
000152350 245__ $$aFluctuation theorems for stochastic interacting particle systems
000152350 260__ $$aMoscow$$bPolymat$$c2014
000152350 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1397130892_17884
000152350 3367_ $$2DataCite$$aOutput Types/Journal article
000152350 3367_ $$00$$2EndNote$$aJournal Article
000152350 3367_ $$2BibTeX$$aARTICLE
000152350 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000152350 3367_ $$2DRIVER$$aarticle
000152350 520__ $$aFluctuation theorems such as the Gallavotti - Cohen theoremor the Jarzynski relation make use of time reversal to establish a symmetry property of the large deviation function and make predictions about entropy production in many-body systems with non-reversible dynamics. We demonstrate,in the context of Markovian jump processes with finite state space, how a wide variety of related fluctuation theorems arise from a simple fundamental time-reversal symmetry of a certain class of observables. We also point out that a specific example of these fluctuation relations, which we call the Gallavotti - Cohen symmetry, may fail if the state space becomes infinite. We work with the master equation approach, which leads to mathematically straightforward proofs and provides direct insight into the probabilistic meaning of the quantities involved.
000152350 536__ $$0G:(DE-HGF)POF2-451$$a451 - Soft Matter Composites (POF2-451)$$cPOF2-451$$fPOF II$$x0
000152350 7001_ $$0P:(DE-Juel1)130966$$aSchütz, Gunter M.$$b1
000152350 7001_ $$0P:(DE-HGF)0$$aRakos, A.$$b2
000152350 773__ $$0PERI:(DE-600)2830430-5$$p3-44$$tMarkov processes and related fields$$v20$$x1024-2953$$y2014
000152350 909CO $$ooai:juser.fz-juelich.de:152350$$pVDB
000152350 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130966$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000152350 9132_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lBioSoft Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000152350 9131_ $$0G:(DE-HGF)POF2-451$$1G:(DE-HGF)POF2-450$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lBioSoft$$vSoft Matter Composites$$x0
000152350 9141_ $$y2014
000152350 915__ $$0StatID:(DE-HGF)0020$$2StatID$$aNo Peer review
000152350 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000152350 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000152350 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000152350 915__ $$0StatID:(DE-HGF)1020$$2StatID$$aDBCoverage$$bCurrent Contents - Social and Behavioral Sciences
000152350 9201_ $$0I:(DE-Juel1)IAS-2-20090406$$kIAS-2$$lTheorie der Weichen Materie und Biophysik $$x0
000152350 9201_ $$0I:(DE-Juel1)ICS-2-20110106$$kICS-2$$lTheorie der Weichen Materie und Biophysik $$x1
000152350 980__ $$ajournal
000152350 980__ $$aVDB
000152350 980__ $$aI:(DE-Juel1)IAS-2-20090406
000152350 980__ $$aI:(DE-Juel1)ICS-2-20110106
000152350 980__ $$aUNRESTRICTED
000152350 981__ $$aI:(DE-Juel1)IBI-5-20200312
000152350 981__ $$aI:(DE-Juel1)IAS-2-20090406
000152350 981__ $$aI:(DE-Juel1)ICS-2-20110106