Home > Publications database > Fluctuation theorems for stochastic interacting particle systems > print |
001 | 152350 | ||
005 | 20240610121021.0 | ||
024 | 7 | _ | |a WOS:000335205400001 |2 WOS |
037 | _ | _ | |a FZJ-2014-01963 |
082 | _ | _ | |a 510 |
100 | 1 | _ | |a Harris, R. J. |0 P:(DE-HGF)0 |b 0 |e Corresponding Author |
245 | _ | _ | |a Fluctuation theorems for stochastic interacting particle systems |
260 | _ | _ | |a Moscow |c 2014 |b Polymat |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1397130892_17884 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a article |2 DRIVER |
520 | _ | _ | |a Fluctuation theorems such as the Gallavotti - Cohen theoremor the Jarzynski relation make use of time reversal to establish a symmetry property of the large deviation function and make predictions about entropy production in many-body systems with non-reversible dynamics. We demonstrate,in the context of Markovian jump processes with finite state space, how a wide variety of related fluctuation theorems arise from a simple fundamental time-reversal symmetry of a certain class of observables. We also point out that a specific example of these fluctuation relations, which we call the Gallavotti - Cohen symmetry, may fail if the state space becomes infinite. We work with the master equation approach, which leads to mathematically straightforward proofs and provides direct insight into the probabilistic meaning of the quantities involved. |
536 | _ | _ | |a 451 - Soft Matter Composites (POF2-451) |0 G:(DE-HGF)POF2-451 |c POF2-451 |f POF II |x 0 |
700 | 1 | _ | |a Schütz, Gunter M. |0 P:(DE-Juel1)130966 |b 1 |
700 | 1 | _ | |a Rakos, A. |0 P:(DE-HGF)0 |b 2 |
773 | _ | _ | |0 PERI:(DE-600)2830430-5 |p 3-44 |t Markov processes and related fields |v 20 |y 2014 |x 1024-2953 |
909 | C | O | |o oai:juser.fz-juelich.de:152350 |p VDB |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)130966 |
913 | 2 | _ | |a DE-HGF |b Key Technologies |l BioSoft Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences |1 G:(DE-HGF)POF3-550 |0 G:(DE-HGF)POF3-551 |2 G:(DE-HGF)POF3-500 |v Functional Macromolecules and Complexes |x 0 |
913 | 1 | _ | |a DE-HGF |b Schlüsseltechnologien |1 G:(DE-HGF)POF2-450 |0 G:(DE-HGF)POF2-451 |2 G:(DE-HGF)POF2-400 |v Soft Matter Composites |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF2 |l BioSoft |
914 | 1 | _ | |y 2014 |
915 | _ | _ | |a No Peer review |0 StatID:(DE-HGF)0020 |2 StatID |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1020 |2 StatID |b Current Contents - Social and Behavioral Sciences |
920 | 1 | _ | |0 I:(DE-Juel1)IAS-2-20090406 |k IAS-2 |l Theorie der Weichen Materie und Biophysik |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)ICS-2-20110106 |k ICS-2 |l Theorie der Weichen Materie und Biophysik |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)IAS-2-20090406 |
980 | _ | _ | |a I:(DE-Juel1)ICS-2-20110106 |
980 | _ | _ | |a UNRESTRICTED |
981 | _ | _ | |a I:(DE-Juel1)IBI-5-20200312 |
981 | _ | _ | |a I:(DE-Juel1)IAS-2-20090406 |
981 | _ | _ | |a I:(DE-Juel1)ICS-2-20110106 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|