
John von Neumann Institute for Computing

Computing derivatives of computer programs

Christian Bischof and Martin Bücker

published in

Modern Methods and Algorithms of Quantum Chemistry,
J. Grotendorst (Ed.), John von Neumann Institute for Computing,
Jülich, NIC Series, Vol. 1, ISBN 3-00-005618-1, pp. 287-299, 2000.

c© 2000 by John von Neumann Institute for Computing
Permission to make digital or hard copies of portions of this work for
personal or classroom use is granted provided that the copies are not
made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise
requires prior specific permission by the publisher mentioned above.

http://www.fz-juelich.de/nic-series/



COMPUTING DERIVATIVES OF COMPUTER PROGRAMS

CHRISTIAN H. BISCHOF AND H. MARTIN BÜCKER

Institute for Scientific Computing
Aachen University of Technology

D-52056 Aachen
Germany

E-mail: {bischof,buecker}@sc.rwth-aachen.de

Automatic differentiation is introduced as a powerful technique to compute deriva-
tives of functions given in the form of a computer program in a high-level program-
ming language such as Fortran, C or C++. In contrast to traditional approaches
such as handcoding of analytic expressions, numerical approximation by divided
differences, or manipulation of symbolic algebraic expressions by computer algebra
systems, automatic differentiation offers the following substantial benefits: it is ac-
curate up to machine precision, efficient in terms of computational cost, applicable
to a 1-line formula as well as to a 100,000-line code, and can be produced with
minimal human effort.

1 Introduction

Numerical simulations arising in large-scale scientific applications such as quantum
chemistry often require the evaluation of derivatives of some objective function.
An example is given in this conference proceedings 1 where the need for deriva-
tives in quantum chemical calculations of molecular properties is demonstrated.
The discussion given therein considers techniques of numerical and analytical dif-
ferentiation. Here, we will discuss another powerful technique called automatic
differentiation (AD) for computing derivative information, say, gradients or Hes-
sians. AD is currently less well known than and sometimes confused with symbolic
differentiation. The purpose of this note is to call attention to AD, to provide
some background information on AD, and to highlight the advantages of AD in
comparison to other techniques of differentiation.

Derivatives play a crucial role not only in quantum chemistry but in numeri-
cal computing in general. Examples include the solution of nonlinear systems of
equations, or the solution of stiff ordinary differential equations, partial differential
equations, or differential-algebraic equations. Derivatives are also ubiquitous in the
areas of sensitivity analysis of computer models, inverse problems, and (multidisci-
plinary) design optimization. See the two proceedings volumes 2,3 for areas where
AD has been successfully applied.

To abstract from the particular area of interest, let

f :
� n→ � m with x 7→ y

denote any vector-valued objective function whose derivatives are sought. We call x
the vector of independent variables and y the vector of dependent variables. In large-
scale applications, the objective function f is typically not available in analytic form
but is given by a computer code written in a high-level programming language
such as Fortran, C, or C++. Think of f as a function computed by, say, one of
the modules of the TURBOMOLE program system to compute and analyze the

1



electronic structure of molecules.4 Given such a representation of the objective

function f(x) =
(
y1(x), y2(x), . . . , ym(x)

)T
, computational methods often demand

the evaluation of the Jacobian matrix

J(x) :=




∂
∂x1

y1(x) . . . ∂
∂xn

y1(x)
...

. . .
...

∂
∂x1

ym(x) . . . ∂
∂xn

ym(x)


 ∈ � m×n (1)

at some point of interest x ∈ � n.
A well-known and widely-used approach for the approximation of the Jacobian

matrix is the use of divided differences (DD). For the sake of simplicity, we only
mention first-order forward DD but stress that the following discussion applies
to DD as a technique of numerical differentiation in general. Using first-order
forward DD, the ith column of the Jacobian matrix Eq. (1) is approximated by

f(x + hiei)− f(x)

hi
(2)

where hi is a “suitably-chosen” step size and ei ∈
� n is the ith Cartesian unit

vector. An advantage of the DD approach is that the function f is needed only
evaluated at some “suitably-chosen” points. Roughly speaking, f is used as a black-
box. The main disadvantage of DD is that the accuracy of the approximation
depends crucially on a suitable choice of these points, i.e., of the step size hi.
However, any strategy to determine a step size faces the dilemma of mutual influence
of truncation and cancellation error: The step size should be small to decrease the
error of Eq. (2) in approximating Eq. (1) even if infinite-precision arithmetic were
to be used; the step size should be large to avoid cancellation of significant digits
when using finite-precision arithmetic in the computation of Eq. (2).

Another traditional approach for computing derivatives is handcoding of an-
alytic expressions. Here, an analytic expression for the Jacobian matrix J(x) is
identified first and then implemented by hand using any high-level programming
language. If care is taken, handcoding results in highly-optimized implementations.
However, analytic expressions are not always available. Furthermore, handcoding
is only smooth for “simple” objective functions, substantially error-prone, and re-
quires considerable human effort.

Computer algebra systems such as MACSYMA can, in principle, also be used
to find an explicit expression for the Jacobian matrix J(x). A disadvantage of
symbolic differentiation is that the length of the representation of the resulting
derivative expressions increases rapidly with the number, n, of independent vari-
ables. This property is extremely painful when higher-order derivatives are consid-
ered. For instance, the Hessian of an objective function of some complexity in more
than three variables can easily result in expressions filling several pages. More-
over, symbolic differentiation is inherently inefficient in terms of computing time
due to the rapid growth of the underlying expressions. The reader is referred to
Griewank 5 for a more detailed discussion of computing derivatives symbolically.
Notice that, with respect to differentiation, Maple takes an exceptional position
among the computer algebra systems because Maple offers the additional option of

2



automatic differentiation as discussed in the following paragraph.a

Automatic differentiation is another option for computing the Jacobian ma-
trix J(x). Virtually any computer program written in a high-level programming
language such as Fortran, C, or C++ can be differentiated by this black-box mecha-
nism. Given a program for the evaluation of the objective function f , this technique
generates, in a completely automatic fashion, another computer program called ex-
tended program that evaluates f(x) and J(x) simultaneously. The key concept
behind AD is the fact that every computation, no matter how complicated, is ex-
ecuted on a computer as a (potentially very long) sequence of a limited set of
elementary arithmetic operations such as additions, multiplications, and intrinsic
functions such as sin() and cos(). By applying the chain rule over and over again
to the composition of those elementary operations, the extended program can be
generated accurately evaluating f(x) and J(x) up to machine precision. AD tech-
niques are discussed in a monograph 6 and a forthcoming book.7 Differentiating a
computer program by AD meets all of the following requirements:

Reliability: The computed derivatives should ideally be accurate to machine pre-
cision. If the functional relation between x and y is not necessarily smooth
the user should get a warning that something might be amiss.

Computational Cost: In many applications, the computation of derivatives is
the dominant computational burden. Hence, the amount of memory and run-
time required for the derivative code should be minimized as much as possible
and in any case be bounded a priori.

Scalability: Whatever approach we choose should give correct results for a 1-line
formula as well as a 100,000-line code.

Human Effort: Derivatives are a means to an end. Hence a user should not spend
much time in preparing a code for differentiation, in particular in situations
where computer models are bound to change frequently.

In summary, handcoding, divided-difference approximations, and symbolic manip-
ulators fall short with respect to the previously mentioned criteria. The main
drawbacks of divided-difference approximations are their numerical unpredictabil-
ity and their computational cost. In contrast, both the handcoding and symbolic
approaches suffer from a lack of scalability and require considerable human effort.

In the next section, we give a brief overview of automatic differentiation. Sec-
tion 3 discusses issues that arise in the design of software packages implementing
the AD technology. In Section 4, we discuss some issues a user of AD tools should
be aware of. Lastly, we make concluding remarks.

aHowever, the intention of automatic differentiation of Maple procedures is the development of
efficient programs in Maple and other programming languages (Fortran, C) whereas, in this note,
we consider automatic differentiation as to generate derivatives of large production codes written
in virtually any high-level programming language.

3



2 Basic Modes of Automatic Differentiation

Traditionally, two basic approaches to automatic differentiation have been em-
ployed: the so-called forward and reverse modes, which date back to the early
sixties and seventies, respectively. These modes are distinguished by how the chain
rule is used to propagate derivatives through the computation. We briefly summa-
rize the main points about these two approaches; a more detailed description can
be found in the references.5,6,8

The forward mode propagates derivatives of intermediate variables with respect
to the independent variables and follows the control flow of the original program. By
exploiting the linearity of differentiation, the forward mode allows us to compute
arbitrary linear combinations J S of columns of the Jacobian matrix J . In the
matrix-matrix multiplication, the symbol S denotes an arbitrary n×p matrix. The
effort required to not only compute the objective function but also J S is roughly p
times the runtime and memory of the original program. In particular, when p = 1
and, thus, the matrix S reduces to a vector s, we compute the directional derivative

J s = lim
h→0

f(x + hs)− f(x)

h

where h is some step size.
In contrast, the reverse mode of automatic differentiation propagates deriva-

tives of the final result with respect to an intermediate quantity, so-called adjoint
quantities. To propagate adjoints, one must be able to reverse the flow of the
program, and remember or recompute any intermediate value that nonlinearly af-
fects the final result. In particular, one must store the intermediate values that
have been involved in nonlinear operations before they are overwritten or go out
of scope. Sometimes some of these intermediates can be recomputed during the
reverse sweep but in any case one has to keep a log of the branch directions taken.

For an m× q matrix W , the reverse mode allows us to compute arbitrary linear
combinations W TJ of rows of the Jacobian matrix J with roughly q times as many
floating-point operations as required for the evaluation of f . In a straightforward
implementation, however, the storage requirements may be proportional to the
number of floating-point operations required for the evaluation of f , as a result
of the tracing required to make the program “reversible.” When q = 1 and, thus,
the matrix W T reduces to a row vector wT , we compute the derivative wTJ . The
reverse mode is particularly attractive for the computation of long gradients, as its
operations count does not depend on the number, n, of independent variables.

The forward mode can be very naturally extended to second third and even
higher derivatives, but the complexity grows like the square or cube p, respectively.
Especially for Hessian-vector products a combined forward and reverse sweep is
attractive, as it still has essentially the same complexity as a single evaluation of
the underlying scalar function. In any case, automatic differentiation produces
code that computes derivatives accurate to machine precision.5 The techniques of
automatic differentiation are directly applicable to computer programs of arbitrary
length containing branches, loops, and subroutines.

The weighting and combining of derivatives through the matrices W and S
is very natural and useful for many applications, especially if sparsity in J can

4



be exploited. Unfortunately, many existing AD tools are (like computer algebra
packages) still exclusively oriented towards the evaluation of Cartesian derivatives,
i.e. the partials of certain dependent variables with respect to certain independent
variables.

3 Design of Automatic Differentiation Tools

Automatic differentiation can be viewed as a particular semantic transformation
problem: Given a code for computing a function, we would like to generate a code
that computes the derivatives of that function. To affect this transformation, two
approaches have been employed:

Operator Overloading: Modern computer languages like C++ or Fortran 90
make it possible to redefine the meaning of elementary operators. That is, we
can for example define a type for floating point numbers that have gradient
objects associated with them (let’s call this new type adouble, say), and for
each elementary operation such as a multiplication, we can define the meaning
of the operator “∗” for variables of type adouble as follows. An assignment
z = x ∗ y not only computes the product of x and y but also updates the
associated gradient object in a product rule fashion ∇z = x∇y + y∇x. So,
each occurrence of a multiplication of two adoubles in the code will also effect
the update of the associated derivatives in a transparent fashion.

Source Transformation: Another way of changing the semantics of the code
is to rewrite it explicitly. That is, for example, the assignment z = x ∗ y is
rewritten into a piece of code that not only contains the computation of z, but
also an implementation of the vector linear combination ∇z = x∇y + y∇x,
implemented either as a do-loop, or as a subroutine call.

Each of these approaches has its advantages and disadvantages. The advantages of
operator overloading are

Terseness: All that is required for a new data type, such as adoubles, is a new
class definition. While such a class definition can be substantial, comprising
several thousand lines of code, it hides this complexity from the user of an AD
tool.

Flexibility: If we want to change an implementation strategy associated with a
particular class, the source code remains unaffected. All that changes is the
class definition itself. So for example, whether we compute first or second
order derivatives is reflected in the class definition, but not in the code being
differentiated.

Full Access to Runtime Information: As mentioned previously, the reverse
mode of AD requires the ability to reverse the partial flow of program execution.
One way to do this is to use operator overloading to generate a tape that logs
all the operations actually performed, and use this tape as the input for a
derivative interpreter, which then can compute any derivatives desired using

5



either the forward or reverse mode of automatic differentiation. This approach
is, for example, chosen in the ADOL-C package.9

The drawbacks of operator overloading are

Lack of Transparency: While it is aesthetically pleasing that the source code
does not change, even though its meaning does, it does not aid in debugging,
as one has to deduce the meaning of the operations implied by the source code
and the associated class definitions.

Implementation Overhead: The actions associated with a class definition can
be viewed as an implied subroutine call, and although much progress has been
made recently in the compilation of operator overloading, the runtime overhead
of this technique can be substantial depending on the sophistication of the
compiler.

Dusty Deck Assimilation: Many existing computer codes are written in lan-
guages such as Fortran 77 or ANSI-C which do not support operator overload-
ing. In particular for large codes, assimilating such codes into the supposedly
backwards compatible Fortran 90 or C++ languages turns out to be a thorny
task.

On the other hand, the advantages of the source transformation approach are

Simplicity of Generated Code: Since the derivative code is spelled out exactly,
usually in the same language as the input code, it is easier to follow the actions
of the derivative code as long as the chain rule is applied in a basic local
fashion. This simplicity also facilitates compiler optimizations and hence faster
execution of the generated code.

Dusty Deck Assimilation: The source transformation approach requires tradi-
tional compiler infrastructure such as parsers, generators and manipulators of
intermediate languages, and unparsers. These kind of tools are readily avail-
able for languages such as Fortran 77 or ANSI-C, at least in the commercial
world.

Variable Scope: Operator overloading inherently sees one elementary operation
at a time. Source transformation approaches, on the other hand, have access
to the context of a particular computation, and hence have more flexibility in
applying derivative rules. For example, the ADIFOR 10,11 and ADIC 12 tools
view a program as a sequence of assignment statements, applying the reverse
mode at this level, and the forward mode overall.

The disadvantages of the source transformation approach are

Implementation Complexity: Source transformation approaches, at least at
the moment, require considerable tool infrastructure, in particular for the
processing of language-dependent features. Also, the lack of a standardized
language description makes changing the semantics of a particular automatic
differentiation tool a potentially rather involved task.

6



Code Expansion or Subroutine Interface Swell: A “pure” source transfor-
mation approach is infeasible when the action associated with a particular
statement exceeds a certain level of complexity. In this case, either the length
of the generated code grows too large for a compiler to digest, or alternatively,
rather extensive subroutine library interfaces need to be maintained to encap-
sulate the basic computational kernels. The latter approach, in many ways, is
similar to operator overloading, albeit considerably less elegant.

Of course, the relevance of the above-mentioned advantages and disadvantages de-
pends to a great extent on the particular application.

Given the mathematical underpinnings of the concept of derivatives, the “igno-
rance” with which one can apply an AD tool usually provokes some of the questions
that we try briefly to address here.

Question: How do you know that the code represents a globally differentiable
function?

Answer: We don’t. AD computes the derivative defined by the sequence of as-
signment statements executed in the course of a function evaluation. Hence,
for a branch (if-statement), which potentially introduces a nondifferentiability,
AD will compute a one-sided directional derivative. This problem is further
discussed in.13

Question: How do you deal with intrinsics?

Answer: Some intrinsics functions, such as abs() and sqrt(), are not differen-
tiable in all points of their domain. Some tools invoke an extension handler
flagging such occurrences, others ignore such occurrences.

Question: What happens when you differentiate through iterative processes?

Answer: It depends. AD generates a new iteration, and it is not clear a priori
whether the new iteration will converge and what it will converge to, although
empirically, AD leads to the desired result. However, derivative convergence
may lag, or derivatives may diverge. For some commonly used approaches for
solving nonlinear systems of equations, this issue is discussed in.14 This prob-
lem clearly requires more research, but the emergence of robust AD tools has
made it possible to tackle this problem for sophisticated numerical methods.

4 Using Automatic Differentiation Tools

Based on our experience with the ADIFOR 10,11 and ADIC 12 tools for automatic
differentiation, this section explores some of the subtler issues related to the use of
AD and the implications for numerical software design. In particular, we focus on
the issues that arise from the fact that AD differentiates a given computer program
step by step, in a fashion that is oblivious of the overall semantics of a program.

7



This “myopic” view gives AD tools the power to deal with programs of arbitrary
length, but it also implies that users of AD tools may have to communicate some
of their knowledge to an AD tool to arrive at a desired solution. Specifically, we
illustrate the issues arising in the context of nondifferentiable language intrinsics
such as max() and numerical integrators.

4.1 Intrinsic Functions

Since the derivative of sin(x) with respect to x is given by cos(x) an AD tool might
transform the statement

y = sin(x)

into the derivative statement

∇y = cos(x) * ∇ x.

Here, the notation ∇y denotes the derivatives of variable y with respect to some
chosen set of variables. In this case, there is no difficulty, since sin() is everywhere
differentiable.

Most computer languages do, however, contain intrinsic functions that are not
differentiable in some points in their domain, as for example the Fortran 77 intrinsics
abs(x) and sqrt(x) when the value of the argument is zero. We call such a point
an “exceptional point.” We cannot simply claim that the function in question is
not differentiable, since a computer program executing such instructions may well
represent a smooth function, such as g(x, y) =

√
x4 + y4. Moreover, intrinsics may

be used to guard against unphysical values of simulation parameters. For example,
in a weather model one might see code such as

rain = max(rain, 0.0).

This statement reflects the fact that rainfall cannot be negative and is intended
to convert a small negative number, which may have arisen from floating-point
roundoff, to the physically sensible number 0 (i.e., no rain).

The function max(x, y) is not differentiable for x = y. However, in the previously
described case, it makes sense to define partial derivatives for the exceptional cases

as ∂max(x,y)
∂ x |x=y := 1.0 and ∂ max(x,y)

∂ y |x=y := 0.0. These definitions do not change
∇rain when rain is set to zero in the induced AD statement

∇rain =
∂max(x, y)

∂ x
∇rain.

However, these definition would not lead to the desired result if the order of
arguments in the max() call was reversed, namely,

rain = max(0.0, rain).

In this case, the derivative of rain would be zeroed out when the value of the
variable was zero, and it would have been appropriate to exchange the definitions
of ∂ max

∂ x and ∂max
∂ y . In other contexts, an argument could also be made for setting

∂max(x,y)
∂ x |x=y = 0.5 and ∂ max(x,y)

∂ y |x=y = 0.5, since then automatic differentiation

8



Given: parameter p, current time t, current solution xc ≈ x(t, p),
suggested time step ∆t.

1) Compute x1 ≈ x(t+ ∆t, p) using Method A.
2) Compute x2 ≈ x(t+ ∆t, p) using Method B.
3) Compute δ = ‖x1 − x2‖ for some norm ‖ · ‖.
4) If δ < some given threshold

accept the higher-order of x1 and x2

and update t← t + ∆t
else

∆t = g(∆t, δ);
goto 1)

endif

Figure 1. Simplified Description of a Numerical Integrator

provides a so-called subgradient, which is useful in nonsmooth numerical optimiza-
tion, as described, for example, in the book.15

These examples demonstrate the following points:

(i). No choice of derivative values for exceptional points will always be correct.

(ii). There is no “automatic” way to decide what sensible choices are.

(iii). User insight into the problem is essential.

Thus, potential users of AD tools need to be aware of these facts and provide
“hints” for an AD tool in the code to be eventually differentiated. Such hints
are particularly important for numerical libraries, as these codes typically embody
subtle numerics and will be reused often. To this end, the ADIFOR and ADIC
systems employ the completely user-customizable ADIntrinsics system for dealing
with Fortran and ANSI-C intrinsics. Surprisingly, in most cases the derivatives turn
out to be the ones intended without the need for derivatives intrinsics modifications.

4.2 Numerical Integrators

Another problem arises from the fact that an AD tool, when applied to a code
embodying a numerical method, will not only differentiate the solution produced
by this method, but also take into account the way by which one arrived at the
solution. As an illustration, consider a parameter-dependent initial value problem

ẋ(p) = f(x, p, t) with x(t = 0) = x0. (3)

where p is a parameter. Figure 1 shows a simplified version of the time-stepping loop
of a typical explicit numerical integrator with step size control. In this figure, the
notation Method A and Method B is used for two integration methods of different
order and g is some function that adjusts the time step ∆t. For simplicity, we
ignore the fact that the time step will be adjusted upwards if there is a good fit.

9



If, for a given p, we are interested in ∂ x
∂ p

∣∣
t=T

, where T is the final time, we can
employ an AD tool to differentiate this code with respect to p. If we differentiate
with respect to p, and use ∇ to denote d

d p , the chain rule of differential calculus
now implies that

∇(∆t) =
∂ g

∂ (∆t)
∇(∆t) +

∂ g

∂ δ
∇δ.

Clearly, ∇δ 6= 0 in general, as δ depends on x, which in turn depends on p. Thus
we have the interesting situation that ∇(∆t) 6= 0 when ∂ g

∂ δ 6= 0; that is, the compu-
tational equivalent of time, ∆t, will have a nonzero derivative with respect to the
parameter p. Viewed from an analytical perspective, this is nonsense — the val-
ues of time and the parameter are not related. From a computational perspective
however, it does make sense — depending on the value of the parameter, we may
choose a different time discretization. Thus, what we really compute as the final
value xT (p) is

xT (p) = x(t(p), p)|t(p)=T
(note the dependence of t on p). Thus, we obtain

∇xt=T =
∂ x

∂ t

∣∣∣∣
t=T

· ∇tt=T +
∂ x

∂ p

∣∣∣∣
t=T

,

and with Eq. (3)

∇xt=T = f(xT , p, T ) · ∇tt=T +
∂ x

∂ p

∣∣∣∣
t=T

.

Note that ∇x and ∇t will have been computed by the AD-generated derivative
code. We observe the following:

(i). Depending on how the time discretization was chosen, we will obtain different
values for ∇tt=T and thus for ∇xt=T . Most certainly, we will not obtain
∂ x
∂ p

∣∣
t=T

which is the result desired by most users.

(ii). If ∆t would have been zero at every step, we would have ∇tt=T = 0 and thus
∇xt=T = ∂ x

∂ p

∣∣
t=T

, as desired by the user. By default, this happens in methods

using a fixed step size. This case is also discussed in.16

(iii). Independent of how the time discretization was chosen, we can recover the
desired solution as

∂ x

∂ p

∣∣∣∣
t=T

= ∇xt=T − f(xT , p, T ) · ∇tt=T . (4)

These issues are discussed in more detail in.17

Note that approaches (ii) and (iii) are really geared toward the library developer
and the sophisticated AD user, respectively. When an integrator code is written, it
is probably feasible to indicate the places where the next time step is assigned and
to indicate that an AD tool should treat this statement as constant with respect to
differentiation, resulting in the assignment of a zero gradient. Current AD tools do

10



not have such facilities built-in yet, but will so soon. At any rate, unless the devel-
oper of the integrator provides this information, the considerable sophistication of
these codes makes it difficult for others to extract this information from the code.

While one might take the attitude that this was not really an issue given the
“fix” (iii), this is not really the case. Even when ∂ x

∂ p
is well behaved, ∇t and ∇x

can become very large and can overflow. Furthermore, the user of an AD tool may
well be unaware of these issues, or may not be able to localize the problem since the
integrator may be buried under other layers of software. However, as shown in,17 if
the final time is prescribed, we are likely to obtain ∇tt=T = 0 and everything works
out; we suspect that this situation has happened in quite a few AD applications.

We note that while (ii) and (iii) will result in the right derivatives ∂ x
∂ p , there

is no guarantee that the derivatives will be obtained at the same accuracy as the
solution x, since the guard of the if-statement governing acceptance or rejection of
a step will not be augmented by AD, and thus still will be only governed by the
behavior of x. Thus, the derivatives obtained by Eq. (4) will be consistent, but
they may not be as accurate as those obtained by solving the sensitivity equation

ẋp =
∂ f

∂ x
xp +

∂ f

∂ p
,

where xp = ∂ x
∂ p

, alongside the original differential equation Eq. (3). It is easy to add
the norm of∇δ to the guard for step size control, but an AD tool cannot be expected
to do so without user guidance. Similar issues also arise in the context of automatic
differentiation of iterative solvers for nonlinear equations and are discussed in.14

5 Concluding Remarks

This note was meant to give a brief introduction to automatic differentiation. We
briefly discussed the advantages of this powerful technique in contrast to the better-
known approaches of numerical, analytic, and symbolic differentiation. Broadly
speaking, automatic differentiation saves work in comparison to handcoding of an-
alytic derivatives and, by computing accurate derivatives, avoids hassle caused by
inaccurate numerical differentiation. We reviewed the forward and reverse modes
of automatic differentiation, gave some background on design issues of automatic
differentiation tools, and discussed some subtle issues involved in using these tools.

Even though automatic differentiation tools are still in their infancy, under
a wide range of circumstances, they already can compute derivatives faster than
divided difference approximations.11 Furthermore, there are examples where the
availability of fully accurate derivatives was essential for numerical robustness and
convergence.18,19,20 A further advantage of automatic differentiation tools that we
did not discuss in this note is their ability to provide, in a fashion that is transparent
to the user, information about the zero/nonzero structure of derivative matrices.21

This information is required to solve linear systems involving the Jacobian, and the
automatic detection of the sparsity pattern avoids the error-prone task of having the
user specify the sparsity pattern. This feature is provided in ADIFOR and ADIC
through the SparsLinC library and is used, for example, in the NEOS (Network-
enabled Optimization Server) problem-solving environment, which is described 22

11



and accessible at http://www-neos.mcs.anl.gov/.
The emergence of robust automatic differentiation tools applicable to func-

tions defined by computer programs in general purpose computer languages such
as Fortran 77, Fortran 90, C, and C++ is putting these tools within the reach
of many computational practitioners in any field requiring derivatives, includ-
ing quantum chemistry. The collection of automatic differentiation tools at
http://www.sc.rwth-aachen.de/Research/AD/subject.html gives a short de-
scription of some available automatic differentiation tools and provides pointers
how to obtain these tools.

Acknowledgments

This work was completed while the second author was visiting the Mathematics
and Computer Science Division, Argonne National Laboratory, USA.

References

1. J. Gauss, in Modern Methods and Algorithms of Quantum Chemistry
(Forschungszentrum Jülich, 2000), This conference proceedings.

2. M. Berz, C. Bischof, G. Corliss, and A. Griewank, Computational Differenti-
ation: Techniques, Applications, and Tools (SIAM, Philadelphia, 1996).

3. A. Griewank and G. Corliss, Automatic Differentiation of Algorithms (SIAM,
Philadelphia, 1991).

4. R. Ahlrichs, M. Bär, M. Häser, H. Horn, and C. Kölmel, Chemical Physics
Letters 162, 165 (1989).

5. A. Griewank, in Mathematical Programming: Recent Developments and Ap-
plications, pages 83–108 (Amsterdam, 1989, Kluwer Academic Publishers).

6. L. B. Rall, Automatic Differentiation: Techniques and Applications, volume
120 of Lecture Notes in Computer Science (Springer Verlag, Berlin, 1981).

7. A. Griewank, Principles and Techniques of Algorithmic Differentiation (SIAM,
Philadelphia, to appear).

8. C. Bischof, A. Carle, P. Hovland, P. Khademi, and A. Mauer, ADIFOR 2.0
user’s guide (Revision D), Technical Memorandum ANL/MCS-TM-192, Math-
ematics and Computer Science Division, Argonne National Laboratory, 1998,
(also CRPC Technical Report CRPC-95516-S).

9. A. Griewank, D. Juedes, and J. Utke, ACM Transactions on Mathematical
Software 22, 131 (1996).

10. C. Bischof, A. Carle, G. Corliss, A. Griewank, and P. Hovland, Scientific
Programming 1, 11 (1992).

11. C. Bischof, A. Carle, P. Khademi, and A. Mauer, IEEE Computational Science
& Engineering 3, 18 (1996).

12. C. Bischof, L. Roh, and A. Mauer, Software–Practice and Experience 27, 1427
(1997).

13. H. Fischer, in Automatic Differentiation of Algorithms: Theory, Implementa-
tion, and Application, edited by A. Griewank and G. F. Corliss, pages 43–50
(SIAM, Philadelphia, Penn., 1991).

12



14. A. Griewank, C. Bischof, G. Corliss, A. Carle, and K. Williamson, Optimiza-
tion Methods and Software 2, 321 (1993).

15. F. Clark, Optimization and Nonsmooth Analysis (John Wiley and Sons, New
York, 1983).

16. A. Sandu, G. R. Carmichael, and F. A. Potra, Atmospheric Environment 31,
475 (1997).

17. P. Eberhard and C. Bischof, Mathematics of Computation 68, 717 (1999).
18. P. Hovland, C. Bischof, D. Spiegelman, and M. Casella, SIAM Journal on

Scientific Computing 18, 1056 (1997).
19. P. Eberhard, in ICIAM/GAMM 95: Issue 3: Applied Stochastics and Opti-

mization, edited by O. Mahrenholtz, K. Marti, and R. Mennicken, pages 40–43
(1996), Special Issue of Zeitschrift für Angewandte Mathematik und Mechanik
(ZAMM).

20. A. Ibsais and V. Ajjarapu, IEEE Transactions on Power Systems 12, 592
(1997).

21. C. Bischof, P. Khademi, A. Bouaricha, and A. Carle, Optimization Methods
and Software 7, 1 (1996).

22. J. Czyzyk, M. P. Mesnier, and J. J. Moré, IEEE Computational Science and
Engineering 5, 68 (1998).

13


