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MOLECULAR PROPERTIES

JURGEN GAUSS

Institut fir Physikalische Chemie
Universitdt Mainz
55099 Mainz
Germany
E-mail: gauss@slater.chemie.uni-mainz.de

An introduction is given into the quantum chemical calculation of molecular prop-
erties with special emphasis on analytic derivative theory, magnetic properties, and
frequency-dependent properties.

1 Introduction

In order to relate results from quantum chemical calculations to experiment, it
is essential to compute quantities that are directly available from measurements.
Clearly, energy and wavefunctions obtained from the solution of the (electronic)
Schrédinger equation are not sufficient for this purpose, and it is necessary to
compute further quantities which characterize the atomic or molecular system of
interest. In particular, theoretical predictions of structure, spectroscopic quantities,
as well as properties such as, for example, dipole moment, polarizabilities, etc.
are important to establish the connection to experiment and to initiate a fruitful
interplay between theory and experiment.

It is quite obvious that the routine and efficient computation of the various
atomic and molecular properties requires techniques which go beyond the “simple”
solution of the Schrodinger equation. Besides theoretical aspects, computational
efficiency is — as always in quantum chemistry — the most important issue that
needs to be adressed.

Considering a molecule in a given electronic state, quantities of interest are:

a) energy differences, i.e., reaction energies, atomization energies, dissociation
energies, energy differences between various isomers or conformers, etc.

b) molecular properties specific for a given electronic state. Examples include the
equilibrium structure, dipole moment, polarizability, vibrational frequencies,
magnetazibilities;, NMR chemical shifts, etc.

¢) properties that characterize transitions between different electronic states. Ex-
amples are here electronic excitation energies, one- and two-photon transition
strengths, radiative life times, ionization potentials, electron affinities, etc.

Properties of type a) involve energy information at different points on the Born-
Oppenheimer potential energy surface. For a dissociation energy, for example,
the energy of the molecule as well as the energies of the fragments are needed.
Properties of type b) require information for one electronic state at a single point
on the potential surface, while properties of type ¢) involve information on different
electronic states.



The given classification of molecular properties is of computational relevance,
as, for example, properties of type a) just require energy calculations for different
points on the potential energy surface and in this respect are rather straightforward
to calculate. Computation of properties of type b) and ¢), however, is more involved
and the required techniques such analytic derivative and response theory.

In this lecture, a thorough discussion of the quantum chemical calculations
for properties of type b) will be given. Special emphasis will be put on analytic
derivative theory (section 2) as well as problems inherent to the calculation of
magnetic properties (section 3) and frequency-dependent properties (section 4).

2 Molecular properties as analytical derivatives

2.1 General discussion

Properties of type b) describe the “response” of the molecular system to an external
perturbation. Let us consider as an example a molecule in an external electrical
field €. If we treat the field as a weak perturbation, a Taylor expansion around the
the “field-free” case is a good description and yields for the energy
dE 1d’°E
E(e) =E(=0)+ R 5205 e
The first-order term in Eq. (1), i.e., the term linear in ¢, involves the first derivative
(gradient) of the energy with respect to €, the second-order term, i.e., the term
quadratic in €, the corresponding second derivative, etc.

From Eq. (1), it is clear that derivatives of the energy play a key role in describ-
ing the response of a molecule to an external perturbation. However, to identify
these derivatives with the molecular properties of interest, it is essential to con-
sider also the physical aspect of the interaction with the external field. Doing that,
it becomes clear that the first-order interaction with an external electric field in-
volves the molecular dipole moment pu, the second-order interaction the molecular
polarizability «, etc.! We can therefore make the following identifications

e2+... (1)
e=0

dipole moment (1) = -4 o (first derivative)

polarizability («) = - ”if (second derivative)
e=0

first hyperpolarizability (3) = — 22 (third derivative)
e=0

and thus already obtain computational expressions for these particular molecular
properties: they can be determined as the corresponding derivatives of the energy
with respect to the components of the external field.

One might ask why a property such as the dipole moment is not just calculated
as a simple expectation value, as it should be possible according to the postulates of
quantum mechanics.? Indeed, the Hellmann-Feynman theorem? states the identity
of the derivative and expectation value expression for first-order properties:

E H
Ccll_ = <\IJ|88—|\IJ> (Hellmann — Feynman Theorem). (2)
x x



However, it should be noted that the Hellmann-Feynman theorem does not neces-
sarily hold for approximate wavefunctions® with which we are generally dealing in
quantum chemistry. In such cases, it has been shown that derivative expressions
are usually the preferred choice.?

The derivative ansatz can be generalized to other properties and in this way
allows computation of a large variety of atomic and molecular properties. Table
1 gives an overview. The list includes the electrical properties which have been
already discussed. Most important for chemical applications, however, are probably
properties that are connected to geometrical derivatives. First derivatives with
respect to nuclear displacements define the forces on nuclei which are essential
for the location of stationary points on the Born-Oppenheimer potential surface
and, thus, for the determination of equilibrium and transition state structures.®
Second derivatives with respect to nuclear coordinates allow a characterization of
the stationary points as minima, transition states, etc., but in addition enable a
qualitative characterization of vibrational spectra within the harmonic-oscillator
approximation. More quantitative treatments of vibrational spectra are possible
via higher derivatives (cubic and quartic force constants; see, for example, the
discussion given in Ref. 6).

Another important class are magnetic properties. For chemists, certainly NMR
chemical shifts and the corresponding spin-spin coupling constants are of greatest
interest. However, theory also allows calculation of magnetazibilities, spin-rotation
constants, rotational g tensors (see the book by W.H. Flygare” for a detailed ac-
count on these properties) as well as parameters that can be obtained from ESR
spectroscopy (see the book by W. Weltner® for an introduction). A few examples
of quantum chemical property calculations will be given later.

2.2  Numerical versus analytical differentiation

In principle, derivatives of the energy can be computed in a rather straightforward
manner using finite-differentiation techniques, e.g., the gradient can be obtained
via

db  E(Az) - E(-Az) 5

dr 2Ax ®)
with Az as an appropriate chosen stepsize. The main advantage of such a numerical
differentiation scheme is that it just requires the calculation of energies (though in
the presence of the perturbation) and, thus, is rather easily implemented. As a
consequence, finite-differentiation techniques have been and are still often used
for the calculation of electric properties (so-called “finite-field” calculations). The
disadvantages of the numerical differentiation scheme, however, are

a) the limited accuracy (a problem in particular for the computation of higher
derivatives),

b) the high computational cost, as numerical differentiation requires for each
derivative two additional energy calculations.

@It should be noted that the Hellmann-Feynman theorem also holds for a few special cases such
as, for example, in Hartree-Fock theory at the complete basis set limit.



Table 1. List of molecular properties which can be computed as derivatives of energies

Derivative Observable
% dipole moment; in a similar manner also multipole
K3
moments, electric field gradients, etc.
d’E N
deades polarizability
_ B (first) hyperpolarizability
deqdepdeg ‘
dFE . . . .
dz, forces on nuclei; stationary points on potential energy
K3
surfaces, equilibrium and transition state structures
2
dd L harmonic force constants; harmonic vibrational frequencies
xleC j
AE . . . . .
i cubic force constants; vibrational corrections to distances
dz;dx;dxy,
and rotational constants
d‘E . . .
—— 55— quartic force constants; anharmonic corrections to
dz;dz;jdxidr
vibrational frequencies
d’E . o . . " . .
duode., dipole derivatives; infrared intensities within the harmonic
approximation
_dE__ polarizability derivative; Raman intensities
dzideqdeg ’
d’E s
dB.dB; magnetazibility
2
dd—E nuclear magnetic shielding tensor; relative NMR, shifts
mg j dBl
B indirect spi i ling constant
rcodlr, indirect spin-spin coupling
_&E_ rotational g-tensor; rotational spectra in magnetic field
dB,dJ 8 !
_&°E nuclear spin-rotation tensor; fine structure in rotational
dI;dB, . P ’
spectra
dFE . . . .
5. spin density; hyperfine interaction constants
&5 lectronic g-t
d5:dS; electronic g-tensor

The latter issue is of particular concern if one is interested in the forces on the N
nuclei of a molecule within a geometry optimization. The numerical evaluation of
gradients requires in this case 2x%3 N the cost of the corresponding energy calculation.



It is obvious that in this way routine determination of geometries is impossible for
larger molecules (see section 2.7).
Further disadvantages of the numerical differentiation scheme are

a) that there is no straightforward extension to the computation of frequency-
dependent properties (see section 4) and

b) that handling of magnetic properties is less straightforward (see section 3), as
the computation of the latter requires the capability of dealing with complex
wavefunction parameters. This capability is in most cases not available.

The alternative to numerical differentiation is analytic differentiation. This means
that first an analytic expression for the corresponding derivative is deduced and
then implemented within a computer code for the actual computation of the cor-
responding property. As we will see later, the use of analytic derivative techniques
solves the mentioned problems and, thus, is clearly the preferred choice for the
computation of properties.

However, it should be noted that application of analytic derivative techniques is
not as straightforward and often requires a complicated computer implementation.
The latter often requires substantial programming efforts as well as theoretical
work for the derivation of the appropriate derivative expressions. Nevertheless,
as the implementation needs in principle to be carried out only once, this cannot
be considered a major disadvantage. Analytic derivatives have been in the mean
time implemented for most of the standard quantum chemical approaches. For
some of the more advanced quantum chemical techniques, however, the task of
programming analytic derivatives can become so demanding that the corresponding
implementations are still missing.” In a similar way, lack of analytic schemes for
the calculation of higher derivatives often necessitates the latter to be calculated
within mixed analytic-numerical schemes in which lower analalytic derivatives are
numerically differentiated. A prominent example is here the computation of cubic
and quartic force constants which often are obtained by numerical differentiation
of analytically evaluated quadratic force constants.®

2.8 Analytic derivatives: general discussion

We start our discussion of analytic derivatives with a description of the general
structure of derivative theory. Naively, one would expect that suitable expressions
for the derivatives of the energy can be obtained by simple differentiation of the
energy expression with respect to the corresponding parameter(s). While this is in
principle true, such an approach, however, does not necessarily lead to computation-
ally efficient expressions. The main problem appears to be the implicit dependence
of the energy on the perturbation through the wavefunction parameters.

For our general discussion, it is important to analyze first in which way energy
and wavefunction depend on a given external perturbation. For both, we have an
explicit dependence on the perturbation through either some set of fixed param-
eters (e.g., the basis functions which are given at the start of a calculation) or

bExamples are here CCSDT and CCSDTQ



the Hamiltonian and an implicit dependence through the wavefunction parameters

which are determined by some set of equations. Examples for the latter are the

MO coefficients, the CI coefficents, as well as the CC amplitudes. As long as we

are not specifying these parameters further, we will denote them collectively by c.
The energy can be then written in the following convenient form

E = E(z,c(z)) (4)
and the equations for the wavefunction parameters ¢ in the form

gz, c(z)) =0 (5)

with the function ¢ indicating the structure of the equations for ¢. Note that
Egs. (4) and (5) are rather general and that various quantum chemical methods
just differ in the definition of the set ¢ as well as in the explicit expressions for £
and g.

Differentiation of the general energy expression given in Eq. (4) then yields®

(@) (50)(z) ®

The first term includes the explicit dependence on the perturbation through the
Hamiltonian as well as the fixed set of parameters, i.e., the basis functions. This
contribution is usually denoted as the integral derivative contribution and is easily
handled (see section 2.6). The second term is more problematic, as it includes
the derivative of the coefficients c. Contrary to the first term, a straightforward
computation is here not possible, as the derivatives d¢/dx are unknown. At a first
sight, one might think that these derivatives need to be explicitly determined by
solving additional equations obtained by differentiation of Eq. (5):

Z)=o. (7)

However, as the determination of ¢ via Eq. (4) usually is the computationally most
expensive step of a quantum chemical calculation, solution of Eq. (7) for the per-
turbed ¢’s would render the analytic scheme rather expensive. The cost would be
similar to those of the numerical scheme.

For the following, it is necessary to distinguish between parameters ¢ determined
by the variation principle (variational parameters) and those not determined by the
variation principle (non-variational parameters). Examples for the first type of pa-
rameters are the MO coefficients in Hartree-Fock (HF) theory or the configuration
interaction (CI) coefficients in CI calculations, while coupled-cluster (CC) ampli-
tudes are examples for the second type.

For the variational coefficients, the following condition holds

as the variation principle requests minimization of the energy with respect to c.
Thus, it is clear that in Eq. (6), i.e., the general expression for the energy gradient,

¢Note that all derivatives are taken here and in the following at the point = 0.



the second term does not contribute and the whole expression simplifies to

()
T x
There is no need to determine the perturbed coefficients dc/dzx.

The situation is more complicated for the non-variational parameters, as here
the corresponding derivatives OE/9c¢ do not vanish. Nevertheless, it is possible
to eliminate the derivatives of ¢ from the gradient expression. The most elegant
way to demonstrate this uses an energy functional E constructed from the energy
expression (Eq. (4)) by augmenting it with the equations that determine ¢ (Eq. (5))
multiplied by Lagrangian multipliers A:

E(z,c(z), \(x)) = E(x, c(x)) + Mx)g(, c(x)). (10)
This functional provides the same energy as Eq. (4), as long as Eq. (5) is fulfilled.
Furthermore, the energy functional can be made stationary with respect to A and

¢ by requesting that
dE
~1=0 11
() )

dE
Om "

The first of the two equations is identical to Eq. (5) for the parameters ¢, while the
second equation allows determination of the Lagrangian multipliers A. Solution of
this additional set is not needed for the determination of the energy but is required
to make E stationary with respect to A. R

With Egs. (11) and (12), the derivative of E with respect to x takes the following

rather simple form
dE [ OE
- = 13
dx < ox ) (13)

_ (g_f) I\ (g—g) (14)

and, as the value of E is identical to E, Eq. (13) is also the desired gradient
expression for F. It can be thus concluded that like for the variational coefficients
(see Eq. (9)) there also is no need to compute derivatives for the non-variational
coefficients ¢. However, unlike for the variational case, for each non-variational
parameter ¢ an additional, though perturbation-independent equation (Eq. (12))
needs to be solved.

Expressions for higher derivatives can be obtained by differentiating the gradient
expressions (Egs. (9) and (13), respectively) with respect to further perturbations.
Derivation of computationally efficient expressions might require some rearrange-
ments, but there are rules which can simplify the derivation. These rules state
explicitly that for the coefficients ¢ the knowledge of the nth derivative is sufficient

and



for the calculation of the (2n+1)th derivative of the energy (2n+ 1 rule) and for the
Lagrangian multipliers A knowledge of the nth derivative is sufficient to compute
the (2n + 2)th derivative of the energy (2n+ 2 rule). According to these two rules,
none of the derivatives is required for the gradient (see discussion above). Knowl-
edge of the derivatives of ¢ suffices for second derivatives, while third derivatives
require derivatives of ¢ and for non-variational parameters also of A. The derivatives
of ¢ and A are determined by solving equations that are obtained by differentiating
Eq. (11) and Eq. (12) with respect to the external perturbation, respectively. We
illustrate the application of the two rules by some examples.

For the variational case, the expression for the second derivative of the energy
takes the following form

’E ([ O’E n 0’FE @4_ 0’E @4_ 0’E Jc dc (15)
drdy — \ 0xdy 0xdc ) Oy Oydc ) Ox OcOc ) Ox Oy’

The contribution due to 9%c/dxdy vanishes here, as the corresponding prefactor
OF/Jc is zero due to Eq. (8).
For non-variational approaches, we obtain for the second derivative of the energy

d*E O*E OPFE \ oc PE\ dc [ O*E '\ dc dc
= + — + —+ ———.  (16)
dzxdy 0xy Oxdc | Oy Oyoc | Ox dcdc | Ox Qy

The contributions due to §%c/dzdy and 9>)\/dxdy vanish because of Egs. (11) and
(12), i.e., due to the stationarity of the functional E with respect to ¢ and A. The
contributions due to 9\/9x and 9\/Qy vanish, because

The prefactors for the terms involving the first derivatives of A are just the deriva-
tives of the left-hand side of Eq. (5). As Eq. (5) holds for all values of x and y, the
corresponding total derivatives of g(x, ¢) must vanish.

As another example, we give the expression for the third derivatives of the



energy in the non-variational case.
&P*E [ O°F
drdydz — \ 0xdydz
L PE Noe (OB Noe [ PE oc
0xdydc | 0z 0x0z0c | Oy 0y0z0c | Ox

OB \ocoe (08 \ocoe (0B ) ocor
0xdcdc | Oy 0z Oydcdc | Ox 0z 0z0cdc | Ox y

o (B \ox [ PE |\ oA
0z 0x0z0\A | Oy 0y0z0\ | Oz

PE )808)\ < PE )808)\ < PE )808)\

00O | 0y 9= \ oyocon | 9z 92 | \ 920c0n ) 9z 0y

(0B Noeor (0B acor (0B ) oo

0xdcoN | 0z Oy Oydco\ | 0z Ox 0z0cO\ | Oy Ox
(2B Nococon (0B \oeorae (08 \ ;oo
0cdcoN | Ox dy 0z 0cdcoN | Ox dy 0z 0cdcoN | Ox Oy 0z
(18)

Note that Eq. (18) contains no contribution due to higher derivatives of ¢ and A.
Again it can be shown that the corresponding prefactors are identical to zero.

The general approach to analytic derivatives presented here has been first for-
mulated by Helgaker and Jgrgensen.'? Though the corresponding computationally
efficient equations can be also obtained in different ways, for example, by using the
interchange theorem of perturbation theory,'! the Lagrangian approach to analytic
derivatives appears to be the simplest as well as the most elegant way to derive
computationally efficient expressions. This is also demonstrated in the next section
where a few specific examples for analytic energy derivatives are given.

2.4  Analytic derivatives: Specific examples

As first example, we discuss first derivatives (gradients) for standard closed-shell
Hartree-Fock Self-Consistent-Field (HF-SCF) calculations. Within the atomic-
orbital (AO) notation (Greek indices p,v, ... are used here and in the following
to denote AOs), the following energy expression is obtained for this case

E =Y Pt +5 3 PuPryl(ualvp) = 5uolpn) (19)

nv nvpo



with P, as the closed-shell AO density matrix
P,uu =2 Z Czl'cui; (20)

hy. as the one-electron integrals, and (uo|vp) as the two-electron integrals in Dirac
notation.

The variational wavefunction parameters are the molecular orbital (MO) coeffi-
cients ¢,;. As the orthonormality of the MOs needs to be considered as additional
constraint, it is most convenient to start with the following energy functional

- 1 1
E= ZPW +5 D PuPop((polvp) = 5{uolpr)

yupo

—22513 Zcﬂlsyucuj 1]) (21)

instead of Eq. (19). The Lagrangian multipliers €;; can be shown to form a Her-
mitian matrix. It can be furthermore demonstrated that this matrix can be chosen
diagonal which leads to the usual case of canonical HF orbitals (see, for example,
Ref. 12). The diagonal element ; = ¢;; can be interpreted as orbital energies
(Koopmans’ theorem).

Based on the discussion in the previous section, the following gradient expression
can be derivded!3

» vlo 190{uv|o
ZW hy ZPWPop ulp) 1 <u|p>)

2 oz
uuop
Ny, 20 22
> Wa 335 (22)
%
with the energy-weighted density matrix defined by
W =2 ceicui. (23)

From Eq. (22), it is clear that evaluation of HF-SCF gradients consists of a
series of contractions of density matrices with the corresponding integral deriva-
tives. For perturbations of the one-electron type, the expression in Eq. (22) takes
a particularly simple form, as only the first term needs to be considered:

E v .
& = E P#V%L (one — electron perturbation). (24)
x x

For geometrical derivatives, however, the two-electron contribution needs to be
considered due to the perturbation dependence of the basis functions. The latter
are usually centered at the nuclear positions and thus change with a displacement
of the nuclear coordinates. Calculation of the integral derivatives is nowadays a
routine task and efficient algorithms have been devised.'* It should be also noted
that calculation of HF-SCF gradients does not require storage of integral derivatives
which would be a serious bottleneck.

10



For second derivatives of the energy, the following expression is obtained at the
HF—SCF level 1516

2 2
Z Wa h#u Z PP 8 (polvp) 10 <N0'|PV>)

dxdy ng 0xdy 2 Oz0y
0%Su OB 8h;w NU|VP> 18<NU|PV>
Z W 0xdy ; Ay 8x Z Poy 2 Oz )
OW, 05,
B Z dy Ox (25)
nuv
with

=23 Gt g2) (20

u:22

As a consequence of the (2n + 1) rule, the expression given in Eq (25) contains
only first derivatives of the MO coeflicients. The latter are determined through
equations that are obtained by differentiating the HF equations

Z f,uucui = Z S,uu Cui€; (28)

or more conveniently by differentiating the equivalent condition

fai0 (29)

which is also known as Brillouin’s theorem.
It is common to parametrize for this purpose the MO coefficient derivatives in
the following way

oc; dc,;i e
i * vi * ji
s iCui +C#i€i%} +%:Cm%cuj- (27)

oc;
# Z cupl, (30)

with the coupled-perturbed HF (CPHF) coefficients U,; as the parameters to be
determined. The CPHF equations!'®16 obtained from differentiating Eq. (28) or
Eq. (29) take then (for real perturbations) the following form.¢

ZZ (aelim) — (ae|mi) — (amlei) + daedim (€0 — €:)) = BY; (31)

dNote that only the coefficients UZ, are determined through the CPHF equations, while the
coefficients U, ;’; can be chosen in any way, as long as the differentiated orthonormality condition

Ugp™ +Spg +Upy =0

is fulfilled with the derivatives S, defined as in Eq. (33). The most common choice is

1

11



with

= " Oh, O{puo|v 1 9{uo|pv
Ba’i = —Zc‘uac”i(ﬁ + ZPO'p( <,LL | p> _ <,LL |p >))
v op

ox 2 Oz
+ Z S (2{am|in) — (am|ni)) + S%.€; (32)
with
x x 83 v
Spq = Z Cupa—;c”q' (33)
nv

The CPHF equations are linear and can be solved using iterative algorithms.!6
As another example, first derivatives of the energy in coupled-cluster (CC)
theory!” are discussed. To simplify the discussion, we ignore the dependence of
the CC energy on the molecular orbitals and consider only the CC amplitudes as
wavefunction parameters. The general CC energy expression is then given by

E = (0] exp(~T)H exp(T)|0) (34)

with T as the cluster operator and |0) denoting the reference determinant, usually
provided by the HF wavefunction. The amplitudes in CC theory are determined
through equations obtained by projecting the Schrédinger equation on the excita-
tion manifold. Denoting with ®,, the determinants within this excitation manifold,
these equations, usually refered to as coupled-cluster equations, are given by

0 = (@] exp(=T)H exp(T)[0). (35)

For the derivatives of the CC gradient expression, we introduce the energy
functional

E = (0] exp(~T)H exp(T)[0) + Y Ap(®y| exp(=T) H exp(T)|0) (36)

with A, as the appropriate Lagrangian multipliers. Eq. (36) is often written in the
following short form

E = (0|(1 4 A) exp(—T)H exp(T)|0) (37)

where we have introduced the de-excitation operator A by

(O[A =" A (@, (38)

For the CC energy gradient, we then obtain in agreement with the (2n + 1) and
(2n + 2) rules

‘fl_f = (0[(1+A) eXp(—T)aa—Z exp(T)]0). (39)

Perturbed T and A thus are not required for the evaluation of CC gradients. '8
The actual CC gradient expression is somewhat more involved due to the ad-

ditional dependence of the CC energy on the MO coefficients. Though the MO

coefficients are determined via the variational principle for the HF wavefunction,

12



they are non-variational with respect to the CC energy. The reason is that the
HF and not the CC energy is made stationary with respect to orbital rotations.
Accordingly, the following energy functional represents a suitable starting point

E = (0[(1+ A) exp(=T) H exp(T)[0) + ) Z Zai fai

+ Z Ipq(z CupSuvCrq — dpa); (40)
Pq v

where we augment the energy functional given in Eq. (36) by the HF condition
(Eq. (29), Z,; is the corresponding Lagrangian multiplier) and by the additional
orthonormality constraint with I, as undetermined multiplier.

Differentiating this energy functional yields the complete gradient expression

dE

7 = 0l +4) exp(—T)aa—Z exp(D)|0) + D> Zas O

ox

S, .
+ZIquC#ZD 8; Cuq) (41)
pq pv

which is usually casted in the following general form!%:29

dE Ohyw A{pv|op) 0S,
dv _;D‘W pr T 2 Twer— g+ 2 L, 42)

uvop 1%

with D, as an effective one-particle density matrix, I',,5, as the two-particle den-
sity matrix and I, as a generalized energy-weighted density matrix. The form
given in Eq. (42) for the gradient is rather general and has turned out very conve-
nient for actual computations. Differences between the various quantum chemical
approaches just exist in the definition of the corresponding density matrices.

A comment is necessary concerning the additional Lagrangian multipliers intro-
duced in Eq. (41). Z,; leads to an orbital relazation contribution to the one-particle
density matrix. It actually is the quantity that has been first introduced by Handy
and Schaefer as Z-vector.?! I,,, turns out to be the MO representation of the energy-
weighted density matrix I, in Eq. (42). Explicit expressions for D, T .0p, and
1, for the various CC models have been given in the literature??-23,24,25,26,27,28,29
and will not be repeated here.

Finally, some basic aspects of the calculation of CC second derivatives are dis-
cussed. To emphasize the important aspects, we solely focus on the CC amplitudes
and ignore the MO coefficient contributions. A corresponding complete discussion
can be found in the literature.30:3

13



Differentiation of Eq. (36) with respect to z and y yields3?
d’FE 0*H

T2 — Ol + Nexp(-T) I exp(T)]0
O+ A)lexp(=T) 5 exp(T), S0} +
O+ A)lexp(=T) 5 exp(T), G0} +
HOU(1L+ M)l fexp(~T)H exp(T), T2, Go110) (43)

As stated by the 2n + 1 and 2n + 2 rules, the expression given in Eq. (43) contains
only derivatives of the cluster operator (and thus of the CC amplitudes) and no
derivative contribution of the A operator. The required perturbed amplitudes are
determined by solving the first-order CC equations obtained by differentiating the
corresponding unperturbed equations given in Eq. (35) with respect to x or y:

(@] exp(~T) 20 exp(1)[0) + (@, |fexp(~T)H exp(T), L )j0) = 0. ()

For some cases, it might be advantageous to rearrange Eq. (43) and to use instead
the following expression3!

d2E 82H
Tody ~ (VL +8) exp(=T) 5o exp(T)[0)

0H dr
HOIL+ ) exp( 1) G- expl(D). -
dA 0H

+<0|@ exp(=T)—— exp(T)[0). (45)

110) +

In Eq. (45), derivatives of the Lagrangian multipliers appear (at a first sight con-
trary to the 2n+2 rule), but one should realize that derivative amplitudes in Eq. (45)
are only needed for one of the two perturbations, namely y. If the two perturba-
tions belong to different classes, this might be of advantage, as the total number
of equations that need to be solved can be lower when using Eq. (45) instead of
Eq. (43). The most prominent example is the computation of NMR, shielding con-
stants, where with the second, so-called asymmetric expression, only 6 perturbed
equations for all components of the magnetic field need to be solved, while use
of the symmetric expression (Eq. (43)) requires solution of a total of 3Nyoms + 3
equations.

This example shows that different expressions for a derivative are possible. It
depends on the circumstances, in particular on the property of interest, which of
the deduced expressions is preferred and computationally more efficient.3!

2.5 Advantages of analytic derivatives

Analytic derivatives are the preferred choice (if available for a quantum chemical
approach) for the following reasons:

14



a) first of all, analytic derivatives generally provide higher accuracy for the cal-
culated derivatives, as they are not affected by rounding errors (too small step
sizes in the numerical differentiation) or problems due to contamination by
higher derivatives (too large step size in the numerical differentiation). This
aspect is of particular importance for higher derivatives, but of lesser concern
for first derivatives;

b) the cost of analytic gradients is independent of the number of perturbations.
Considering expressions Eq. (22) or Eq. (42), it is clear that the perturba-
tion dependence only appears through the integral derivative contribution. As
can be shown, computation of integral derivatives can be carried out with
cost independent of the number of perturbations. The same computational
advantage is not necessarily as pronounced as for higher derivatives. For ex-
ample, analytic computation of CC second derivatives scales with the number
of perturbations.?! The same dependence is seen for the calculation of second
derivatives based on numerical differentiation of analytically evaluated gradi-
ents;

¢) magnetic properties can be easily treated, as all quantities in the analytic
approach are either purely imaginary or real and, thus, can be handled using
real arithmetic. The only complication arises due to the fact that for magnetic
properties some matrices are antisymmetric instead of symmetric.

d) extension to frequency-dependent properties is possible in the framework of
response theory.

2.6 Awvailability of analytic derivatives

The use of analytic derivatives in quantum chemistry started in 1969 with the clas-
sic work of Pulay!® on HF gradients.® As soon as their applicability and efficiency
for geometry optimizations and force constant calculations3 had been realized, a
lot of effort was devoted to theory as well as implementation of analytic deriva-
tives. Important contributions to analytic derivatives were made by many groups;
noteworthy probably in particular those of the groups of Pople, Schaefer, Handy as
well as Bartlett. Landmarks in the development of analytic derivative techniques
have been the implementation of second derivatives at the HF level and MP2 gradi-
ents in 1979 by Pople et al.,'6 the formulation and implementation of MP2 second
derivatives by Handy and Bartlett et al.343%:36 in 1985, and the implementation of
CCSD gradients by Schaefer et al.22 in 1987.

A more general important contribution to derivative theory has been the intro-
duction of the Z-vector method by Handy and Schaefer?! which had a large impact
on the theory of gradients for correlated quantum chemical approaches. Though
computation of integral derivatives is nowadays considered a routine issue, it should
not be forgotten that the availability of integral derivative packages has been an
important prerequisite for all of the advances mentioned above.

€It might be of interest to note that papers on analytic derivatives (though within a one-center
basis set expansion) have been published as early as 1958 by Bratoz.32
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Table 2. Implementation of analytic geometrical derivatives within standard quantum chemical

approaches

First derivatives Ref.
HF Pulay (1969) 13
DFT Ziegler et al. (1988), Salahub et al. (1989), Delley (1991) 37,38,39
MCSCF Kato and Morokuma (1979), Goddard, Handy, Schaefer (1979) 404!
MP2 Pople et al.(1979) 16
MP3 Bartlett et al. (1985) 42
MP4(SDQ) Gauss and Cremer (1987) 43
MP4 Gauss and Cremer (1988), Bartlett et al. (1988) 44,45
CID, CISD Schaefer et al., Pople et al. (1980) 46,47
CPF Rice, Lee, Handy (1980) 48
QCISD Gauss and Cremer (1988) 49
QCISD(T) Gauss and Cremer (1989) 50
CCSD Schaefer et al. (1987) 2
CCSD(T) Scuseria(1990), Lee and Rendell (1990) 26,27
CCSDT-n Gauss and Stanton (2000) 29
MR-CI, MR-ACPF  Shepard et al. (1991) 51
Second derivatives

HF Pople et al. (1979) 16
DFT Handy et al. (1993), Johnson, Frisch (1994) 52,53
MCSCF Schaefer, Handy et al (1984) 54
MP2 Handy et al. (1985), Bartlett et al. (1986) 34,35,36
MP3, MP4 Gauss and Stanton (1997) 31
CISD Schaefer et al. (1983) 55
CCSD Koch, Jgrgensen, Schaefer et al. (1990) 56
CCSD(T) Gauss and Stanton (1997) 31
CCSDT-n Gauss and Stanton (2000) 29
Third derivatives

HF Schaefer et al. (1984) o7

Table 2 gives an overview about the available analytic derivative techniques

within the standard quantum chemical approaches.

The list of references given

there, however, must remain incomplete, as it is impossible to mention all papers
in the area of analytic derivatives. Often, initial implementations were followed up
by extensions to open-shell systems or in case of correlated approaches to other
type of reference functions. In addition, there have been many papers considering
algorithmic advances. For example, a number of papers have been published re-
porting direct or semi-direct implementations of MP2 gradients,thus significantly
extending the range of the applicability of MP2 gradients.

With the increasing popularity of density functional theory (DFT) in quantum
chemistry, interest very soon focused on analytic DFT derivatives and implemen-
tation of first and second derivatives were reported37:38:39:52:53  While analytic
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derivatives are no more complicated for DFT than for HF-SCF, it should be noted
that differentiation of the exchange-correlation contribution can pose some prob-
lems due to the usually employed numerical integration schemes.5!

2.7 Application of analytic derivatives: examples for geometrical derivatives

A few illustrative examples for the application of analytic (geometrical) derivatives
will be given in the following. Fig. 1 shows a dimer of a hexabenzocoronene deriva-
tive (HBC-Bu) which has been synthesized by Miillen et al.%2 The structure has
been investigated by X-ray analysis®? as well as by solid-state NMR. spectroscopy
in the group of Spiess.%? These experimental studies have been supplemented by
quantum chemical calculations.®® We do not discuss the chemical aspects of these
calculations rather focus on their computational aspects. The dimer of HBC-tBu
consists of 264 atoms and the corresponding calculations using the 3-21G basis
involved 1452 basis functions and 786 degrees of freedom in the geometry optimiza-
tion.

Fig. 1: Optimized structure of HBC-tBu dimer

Using linear-scaling gradient techniques®®:/ the energy calculation (all calcula-
tions have been carried out in Cy symmetry) required 4 hours and the corresponding
gradient required 2.3 hours on a DEC PW 433au workstation. This clearly demon-
strates that geometry optimizations for rather large systems are nowadays feasible.
The important prerequisite is that the computational costs do not scale with the
number of degrees of freedom.

As a second example, we discuss a quantum chemical study of the cubic and
quartic force field of propadienylidene (C3Hsz) using analytic derivative techniques
at the CC level.28:31 Propadienylidene is the smallest stable cumulene carbene. It
has been investigated using various spectroscopic techniques and attracted a lot
of interest as interstellar molecule.®® Computation of the cubic and quartic force

fFor a general introduction into linear-scaling techniques, see the lecture by M. Head-Gordon.
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Table 3. Comparison of computed harmonic and fundamental frequencies for CoHy with the ex-
perimental data from Ref. [65]. All computational results have been obtained at the CCSD(T)/cc-
pVTZ level.

Harmonic Infrared Fundamental Experimental
Frequency Intensity Frequency Fundamental
(em™1) (km mol~1) (em™1) (em™1)
a1 symmetry
1 3123 5 2997 3050-3060777
Vs 1998 250 1956 1952-1963
V3 1495 10 1458 1447-1449
V4 1119 2 1111 —

b1 symmetry

Vs 217 3 211 —
bs symmetry
Vg 3212 0 3069 —
vr 1052 3 1034 —
Vs 1020 19 996 999-1005
Vg 275 114 287 —

fields were needed for a rigorous assignment of the matrix IR spectrum measured
by Maier et al.%6 and for a theoretical determination of vibrational corrections to
the rotational constants of C3Hy. The latter are needed to deduce an equilibrium
structure (r. structure) for propadienylidene from the experimental vibrationally
averaged rotational constants.®” The calculation of the anharmonic force field was
carried out by numerical differentiation of analytically evaluated force constants
along the normal coordinates (for a detailed description, see Ref. 9). In this way,
computation of anharmonic force field is a rather routine matter, while the same
cannot be stated for anharmonic force field calculations based on a numerical dif-
ferentiation of energies. The computation of the semi-diagonal quartic force field
at the CCSD(T)/cc-pVTZ level required about 45 days CPU time on a DEC PW
433au workstation. A single energy calculation requires less than half an hour, a
gradient calculation about one hour and a complete second derivative calculations
about 1.5 days.

The results from our calculations for C3Hg are summarized in Fig. 2 and Ta-
ble 3. Fig. 2 compares the equilibrium geometry obtained from a least-squares fit to
the experimental rotational constants corrected for vibrational effects (computed at
the CCSD(T)/cc-pCVTZ level) with a structure determined at the CCSD(T)/cc-
pCVQZ level (for further details, see Ref. 68 The agreement is excellent and differ-
ences amount to less than 0.001 A. Table 3 compares the computed fundamental
frequencies with those obtained in the matrix IR study.%® Again the agreement is
good, except that the calculation sheds some doubt on the assignment of the band
at 3123 em ™! to the antisymmetric CH stretching mode.

18



1.0828

H (1.0837)
117.52° .
(117.46°) C C C:
1.3280 1.2869

H  (1.3281) (1.2879)

Fig. 2: Equilibrium structure (distances in A, angles in degrees) of propadienylidene as
obtained from an analysis of experimental rotational constants corrected with vibrational
corrections obtained from a CCSD(T)/cc-pCVTZ anharmonic force field. Geometrical
parameters obtained from a CCSD(T)/cc-pCVQZ optimization are given in parentheses.

3 Magnetic properties

Among the magnetic properties of a molecule, the parameters which characterize
the NMR spectrum of a molecule are of particular interest to chemists. The quan-
tum chemical calculation of NMR chemical shifts and also of indirect spin-spin
coupling constants is of great importance, as the assignment of experimental NMR,
spectra is not straightforward. There is no simple relationship between chemical
shifts and coupling constants on one hand and the structural parameters of interest
on the other hand.

As the calculation of magnetic properties pose a few special problems, their com-
putation is discussed in some detail in this section. Nevertheless, analytic derivative
theory (as discussed in the previous sections) is the main prerequisite for the effi-
cient computation of magnetic properties, as magnetazibilities are given as second
derivatives of the energy with respect to the magnetic field, NMR chemical shifts
as the corresponding mixed derivatives with respect to field and nuclear magnetic
moments, and indirect spin-spin coupling constants as second derivative with re-
spect to the corresponding nuclear spins (compare Table 1). In the following, the
focus will be on the additional difficulties in the calculation of these properties.
Our main focus is on NMR chemical shifts, but a few remarks are also given on the
calculation of indirect spin-spin coupling constants.

3.1 Qualitative discussion

Before we discuss the actual computational aspects, it is appropriate to give a
qualitative picture of the chemical shielding effect. Consider for this purpose a
nucleus K with spin Ix in an external magnetic field B. The spin is associated
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with a magnetic moment my according to
mpg = ")/KIK (46)

with vx as the gyromagnetic ratio. The magnetic moment mg directly interacts
with the external field leading to an energy correction of the form

AE = —mg - B. (47)

If this were the only contribution, NMR, spectroscopy would not be able to distin-
guish between nuclei in different chemical environments.

The phenomenon of chemical shifts can only be understood if the electronic
motion is explicitly considered. In particular, one has to take into account that
the external magnetic field induces an electronic currenty and that according to
Biot-Savart’s law%? each current generates a magnetic field. As the induced field is
proportional to the current and the current proportional to the external field, the
induced magnetic field is in first order proportional to the external field. At the
position of the nucleus K, the induced field can thus be written as

Bind = —O'KB (48)

with ok as the chemical shielding tensor. Note that o i is a tensor, as B;,4 is not
necessarily parallel or antiparallel to B.

The total magnetic field at the nucleus K is given as the sum of external and
internal field

Blocal =B+ Bind (49)

and the energy correction and the splitting of the energy levels in the presence of
an external magnetic field B is then

AE = —mg - Blocal (50)
—mK(l — O'K)B. (51)

The latter expression is identical to the shielding term in the effective Hamiltonian
Hyargr often used in NMR spectroscopy.”® The shielding term is supplemented in
Hyyr by a second term which describes the coupling of the spins and thus is
responsible for the multiplet structure in NMR spectra.

While the effective NMR Hamiltonian is often used to simulate spectra or to
deduce the relevant NMR parameters from experimental spectra, the quantum
chemical task is different. There, it is the goal to compute the relevant NMR
parameters, i.e., the shielding tensors and the spin-spin coupling constants, for a
given molecule without any further information.

To complete the introductory discussion, it should be noted that in most cases
isotropic shieldings

- %mm (52)

as well as relative shifts

5:Uref—UK (53)

9Note there is no electronic current in the field-free case.
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are reported. The relative shifts § are given with respect to the shielding o,..s of
a reference compound (for example, TMS in case of 'H and '3C). Furthermore, as
the chemical shielding is a rather small effect (which, however, can be very precisely
measured), the dimensionless shielding constants are usually given in ppm.

3.2 Shieldings as second derivatives of the energy

Following the basic physical explanation of the chemical shielding effect, it is ob-
vious that the shielding tensor is an electronic property that should be available
through quantum chemical calculations. From Eq. (51), it is clear that the shielding
tensor is a second-order response property with magnetic field and nuclear mag-
netic moment as the corresponding perturbations. Accordingly, the shielding tensor
can be computationally obtained as the following second derivative of the electronic
energy

d*E )

K

oi; = | 35— , (54)
J (dBjdei B,m =0

or in other words, the energy correction given in Eq. (51) can be considered as the
corresponding quadratic term in a Taylor expansion of the molecular energy with
respect to B and my-.

EB,mg) = +§:§:<d36mmﬁ> B mg; + ... (55)

B,mg =0

3.8 Molecular Hamiltonian in the presence of a magnetic field

For all property calculations, it is essential to specify first the corresponding per-
turbed Hamiltonian. While this is a rather straightforward task for most properties,
some difficulties arise in case of the magnetic field.

In the presence of an external magnetic field, the momentum operator p in the
electronic Hamiltonian”

2

H—§£+W) (56)

needs to be replaced by its mechanical counterpart
e
p—m=p+ A). (57)

In Eq. (57), e denotes the elementary charge (the charge of the electron is —e),

¢ the speed of light, and A the vector potential, which together with the scalar

potential ¢(r) represents the fundamental quantity for a theoretical description of

electromagnetic field.”' Note that the Gaussian unit system?? is used throughout.
The magnetic field is uniquely determined via

B=VxA (58)

hFor the current discussion it is sufficient to consider a one-electron system, as a generalization
to a many-electron system is straightforward.
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from the vector potential A. It is obvious from Eq. (58) that the vector potential
suffices to specify the magnetic interactions in the Hamiltonian. Nevertheless, one
should note that B and not the potential A is the observable quantity. We later
return to this aspect.
Carrying out the substitution given by Eq. (57), one obtains for the Hamiltonian
of an electron in an external magnetic field
(p—£A)?

H= -2 4 V(). (59)

For our purpose, it is sufficient to consider static magnetic fields of the form
B = const (60)
which are adequately described by the vector potential
A= %B Xr. (61)
As the vector potential given in Eq. (61) satisfies the (Coulomb gauge) condition
V-A=0, (62)

we can rewrite the Hamiltonian in Eq. (59) as

2 e 2
2m  mec 2

2
- A+ V(r). (63)
Note that p and not 7 is the canonical conjugate momentum to the position r, so
that the operator p is given by —iAV in the position representation.

Insertion of the explicit form of the vector potential (Eq. (61)) into Eq. (63)
then yields for the Hamiltonian
h2 ieh 2
T w2 B (rx V) 4 C

H=—
2m 2me 8mc?

[(B-B)(r-r)—(B-r)(B-r)+V(r)
(64)

and thus the following expression for the first and second derivative of the Hamil-
tonian with respect to B;

on __ich

0B;  2me

0%h B e?
8Bi83j - 4mc2

[(r-r)d;; — rirj]. (66)

Considering in addition the vector potential due to the magnetic moments

A=
TE (67)
the corresponding derivative of H with respect to my is given by
omp ; me  |r— Rg]|
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and for the mixed derivative with respect to B; and my the following expression
is obtained

82h N 62 r- (I‘—RK)(SU —Tj(I'—RK)i
OB;Omy;  2mc? r—Rg[? '

From Egs. (65) and (68), it is clear that the matrix elements of 0h/0B; and Oh/0m N
are imaginary if the usual real basis functions are employed. This explains why
a finite-field calculation of magnetic properties requires the capability of dealing
with complex wavefunction parameters. On the other hand, in case of an analytic
calculation all matrix elements are evaluated in the zero-field limit and thus are
either real or purely imaginary. Real arithmetic is then sufficient, as ¢ can be
factored out from all imaginary quantities. The only difficulty arises due to the
fact that matrices which are symmetric for “real” perturbations

(69)

(il 2 1v) = (v (70)

are antisymmetric for “imaginary” perturbations such as the magnetic field

(il = (1

) =~ ) ()

3.4 Gauge-origin dependence in the calculation of magnetic properties

The problem of gauge-invariance (or gauge-origin independence) in the calculation
of magnetic properties arises because of the use of the vector potential A for the
description of the magnetic interactions in the Hamiltonian. While A uniquely
defines the magnetic field via Eq. (58), there is no unique choice of A to a given
magnetic field B. The reason is the V operator in Eq. (58) which allows to add the
gradient of an arbitrary scalar function to A without changing the corresponding
magnetic field. For a static homogenous field, for example, the vector potential can
be chosen in the general form

A= %B « (r - Ro) (72)

with Ro as an arbitrary parameter, the so-called gauge origin.

The freedom in the choice of A, i.e. in fixing the gauge, has in principle no con-
sequences, as B as the observable quantity is uniquely defined. However, one should
note that the freedom in choosing the gauge for a given B introduces an arbitrary
parameter, namely the gauge-origin R, into the Hamiltonian. The question is
now what effect this arbitrary parameter Ro has on the computation of magnetic
properties.

The basic physical laws require that values for observable quantities must be
independent of the chosen gauge or gauge-origin. This statement is known as the
principle of gauge-invariance (or in our special case as gauge-origin independence).
It is an obvious statement, as Hamiltonians differing only in R describe the same
physical system with the same physical properties. The values for the latter there-
fore cannot depend on R which is exactly what the principle of gauge invariance
states. However, it should be noted that gauge invariance is only requested for
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Table 4. 'H shielding constants (in ppm) for hydrogen fluoride calculated at the HF-SCF level
using different basis sets and gauge origins.

gauge origin
basis set center of mass fluorine hydrogen
dz+d 29.3 27.6 60.1
tz+d 28.4 27.2 50.8
qz+2d 27.7 27.0 40.4

observable properties and not for non-observable quantities such as, for example,
the wavefunction. For the latter gauge invariance cannot be enforced.

It is obvious (and straightforward to demonstrate, see, for example, Ref. 73)
that the exact solution to the Schrodinger equation satisfies the requirement of
gauge invariance. All properties computed from the exact solution are uniquely
defined and, as it should be, independent of the gauge origin Ro. It is also obvious
(though it has to be discussed for each case separately) that gauge invariance is not
necessarily ensured for approximate solutions of the Schrodinger equation. This is
a major problem for quantum chemistry, as there we deal almost exclusively with
such solutions.

Indeed, it is easily shown that none of the routinely applied quantum chemical
approaches provides gauge-invariant results for magnetic properties. The origin of
this deficiency is easily traced back to the finite-basis set representation used for the
molecular orbitals (commonly known as LCAO approximation). To illustrate the
problem, Table 4 contains results for the shielding constants in hydrogen fluoride
computed at the HF-SCF level using different basis sets and different gauge origins.
The results clearly differ for the three gauge origins. Further, it is observed that
the largest discrepancies appear for the smaller and more incomplete basis sets. In
passing, we note that ezact HF calculations would provide gauge-origin independent
results, as the problem is the basis-set expansion and not the HF approximation.

The main problem with the gauge-dependence of the computational results is
that they are no longer uniquely defined. The computed values for magnetic prop-
erties depend on a parameter (or parameters) which can be chosen in an arbitrary
manner. This also means that results could even become meaningless, when, for
example, computed chemical shifts for symmetry-equivalent nuclei are predicted to
be different. Clearly, this is an artifact of the calculation.

However, the gauge-dependence problem is more involved, as one would expect
from the discussion given so far. Naively, one would assume that unique results can
be achieved by simply fixing the gauge origin, for example, to the center of mass of
the considered molecule. Of course, such a choice would guarantee unique results,
but on the other hand it does not resolve the fundamental problem connected with
the gauge problem in the computation of magnetic properties.

A second serious problem in the calculation of magnetic properties is the slow
basis set convergence of the results. Fig. 3 displays the convergence for the 'H
shielding in case of hydrogen fluoride.
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Fig. 3: Basis set convergence in the calculation of the 'H shielding constant of hydrogen
fluoride. All calculations have been carried out with the gauge origin at the hydrogen.

It is seen that rather large basis sets are required to obtain reliable results. Conver-
gence to the basis set limit is much slower than in the computation of most other
molecular properties. In particular, standard basis sets appear insufficient for the
reliable calculation of magnetic properties.

For atoms, the nuclear position represents a natural gauge origin. With this
choice, no problem in the finite-basis representation of the magnetic interaction
appears, as the usually employed basis functions, i.e., spherical Gaussians centered
at the nuclear position, are eigenfunctions to the angular momentum operator

l=r xp. (73)

The same is not the case as soon as the gauge origin is shifted and no longer
coincides with the nuclear position. The angular momentum is then defined with
respect to the displaced gauge origin

lo=(r—-Ro)XPp (74)
and the following holds

lolxu) = 1xu) + Ro X plxu) (75)

when 1o is applied to a basis function |x,). The second term in Eq. (75) involves
a simple differentiation of a Gaussian basis function and thus leads to basis func-
tions with by one increased and decreased angular momentum quantum numbers.
A proper basis set representation of lp|x,) thus requires that additional, higher
angular momentum functions are included in the basis set, i.e. the corresponding p
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function for a s-function, the corresponding d function for a p function, etc. A cor-
rect representation of this term would require a complete AO basis which is usually
not provided. Shifting the gauge origin away from the nucleus thus detoriates the
description of the magnetic interactions. The detoriations increases with the size
of the displacement.

3.5 Local gauge origin methods

From the discussion above, it is clear why the nucleus is the best gauge origin
for atoms. However, a similar natural gauge origin does not exist for molecules.
It is also obvious from the discussion above that a single gauge origin must be
unsatisfactory for molecular calculations. The quality of the description for the
various parts of a molecule depends on their distances to the gauge origin. As
a single gauge origin can impossibly be optimal for all molecular parts, a rather
unbalanced description of the magnetic interactions results.

The only viable way to overcome these problems consists in the use of more than
one gauge origin for the external magnetic field. The idea behind this concept of
local or distributed gauge origins is simple, though the technical realization is more
involved. To introduce local gauge origins, it is first necessary to partition the
molecule (or to be more specific the molecular wavefunction) into local fragments.
For each fragment, the gauge origin can be then individually chosen in an optimal
way. If the local fragments can be assigned to the various atoms in the molecule,
the corresponding nuclear position would be, for example, a good choice for the
gauge origin.

As within the concept of local gauge origins all molecular parts are decribed
equally well, a balanced description is achieved. A “good” description of the mag-
netic interactions is ensured, as for each local fragment an optimal choice for the
gauge origin is possible.

For a realization of the described concept of local gauge origins, it is necessary
to introduce gauge-transformations. A shift of the gauge origin from Ro to Ry, is
achieved in the theoretical description via a so-called gauge transformation. For a
one-electron system, the corresponding equations are

U — U = exp(—A(r)) ¥ (76)

H — H = exp(—A(r)) H exp(A(r)) (77)
with the gauge factor defined by

e

A(r) = S [(Rp—Ro) x B| . (78)
Expansion of the Hamiltonian H’ using the Hausdorff formula
1
H' = H + [H,A] + 5[[H,A],A}+... (79)
By (R —RL) x V) 4+ (80)
N 2me © o
h? ieh
= V24 V() - — B (r—RL) X V) + .. (81)
2m 2me
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shows that H' is indeed the Hamiltonian with the gauge origin at Ry, instead of
Ro.

To introduce local gauge origins, the concept of gauge transformations needs to
be extended, as so far we are only concerned with the change from a given origin to
another gauge origin. This extension is easily achieved by introducing more general
gauge transformations of the following kind

D exp(Aa(r)) Pa (82)

A

where P4 represents a suitable projector on the local fragment A and exp(A4(r))
a gauge transformation to the origin chosen for A. Note that it can be shown
that Eq. (82) defines indeed a valid gauge transformation and leaves for the exact
solution of the Schrédinger equation all physical observables unchanged. As usual,
we have to require for the projector that

Y Pa=1. (83)
A

One should also note that for a many-electron system the corresponding gauge
transformation is given by

N
[T exp(Aa(ra)) P (84)

a=1

where « is the electron index and If’ff the corresponding projector.

Following Eq. (82), it is most convenient to define the local fragment at the one-
electron level. With the atomic and molecular orbitals as the one-electron building
blocks for the wavefunction, it appears natural to introduce individual gauge origins
for these one-electron functions.

The corresponding schemes, i.e., IGLO,”*7 LORG,® and GIAQ77:78:79:80 are
nowadays well established and routinely used for NMR, chemical shift calculations.
In fact, it is justified to state that these schemes first enabled those calculations
to be routinely carried out within chemical applications, as the trivial solution to
the gauge problem, i.e., the use of very large basis sets, is necessarily restricted to
small molecules.

IGLO and LORG are both based on individual gauges for molecular orbitals.
However, as standard HF orbitals are usually delocalized, they are not well suited
for a local gauge origin approach. It is therefore mandatory to introduce localized
occupied orbitals®! and to define individual gauges for them. This is exactly what
is done in the individual gauges for localized orbital (IGLO) approach of Kutzelnigg
and Schindler”® 7> and the localized orbital /local origin (LORG) scheme of Bouman
and Hansen.”® Details for both approaches can be found in the original literature.

Considering the need of localized orbitals as disadvantageous, it appears more
natural to work with atomic orbitals (which are by construction localized quantities)
and to assign to each of them an individual gauge origin. No further manipulations
are required in this case. This choice of local gauge origins leads to what is nowa-
days known as the gauge-including atomic orbital (GIAO) approach.? As it seems

‘The GIAO method is sometimes also called the London atomic orbital (LAO) approach
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that the GIAO approach is becoming the standard for the calculation of magnetic
properties, we will discuss it in the following section in some detail.

3.6 The GIAO ansatz

The GIAO ansatz”"78 7980 consists in choosing local gauge origins for atomic or-
bitals |x,). This means in particular that the corresponding nucleus at which the
atomic orbital is centered is chosen as the “natural” gauge origin.

Within the concept of local gauge origins, the GIAO ansatz is based on the
following gauge-transformation

D exp(Au(r)) Py (85)

w

with the projector on |x,) defined by
Py =>" ) S (0] (86)
n

and the gauge factor given by
ie

Aulr) = 5

R, —Rop)xB]-r. (87)
with Ro as the original gauge origin in the Hamiltonian and R, as the center of the
basis function |x,). It is obvious that the gauge factor given in Eq. (87) describes
a shift of the gauge origin from Ro to R,,. The projector in Eq. (86) is somewhat
more involved in order to account for the non-orthogonality of the AOs.

While Eqgs. (85) to (87) yield in our opinion a very elegant description of
the GIAO approach, a different, though in principle equivalent description is
more common.®? Consider the equations which define the gauge transformations
(Egs. (76) and (77)). These equations can be interpreted such that there is some
freedom whether the phase factors (of the gauge transformation) are assigned to
the Hamiltonian or to the wavefunction. Egs. (76) and (77) thus offer two possi-
bilities for the interpretation of the GIAO approach. The first is to apply the local
transformation and to work with a modified Hamiltonian but with the same un-
changed wavefunction. This means that the latter is described in the usual way with
the standard atomic orbitals, etc. The second possibility leaves the Hamiltonian
unchanged, but attaches additional phase factors (those from the gauge transforma-
tion) to the wavefunction description. In particular, it appears convenient to attach
these additional phase factors to the AOs and to describe the GIAO ansatz such
that the calculation of magnetic properties are now carried out with the following
perturbation-dependent basis functions

e

xu(B)) = exp(— 5

(B x [Ry = Ro]) - 1)[x,(0)) (88)

instead of the usual field-independent functions |x,(0)). The field-dependent basis
functions of Eq. (88) have been termed in the literature as gauge-including atomic
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orbitals’ or London orbitals.

We will discuss now in some detail why the GIAOs provide a satisfactory solution
to the gauge-origin problem. Let us take first the local gauge origin view, i.e.,
the description of the GIAO ansatz as an approach where local gauge origins are
introduced for AOs. The gauge-origin problem is solved here by fixing the gauge
in an optimal way. This first provides unique results and second ensures fast basis
set convergence, as for each AO the corresponding optimal gauge is used. However,
one should avoid the term gauge invariance in this context, as the gauge problem
is only solved by fixing the gauge in a very special way. However, the results are
independent of the original gauge (characterized by the common gauge origin Ro)
and in that respect it is appropriate to talk about gauge-origin independent results
in the sense that the results for magnetic properties are independent of Ro.

Let us take the second view, i.e., that of perturbation-dependent basis functions.
Here, the use of special basis functions ensures proper behaviour of the wavefunc-
tion in the presence of the magnetic field. Gauge-origin independent results are
obtained, as these basis functions are especially tailored to the chosen gauge (the
gauge origin Ro appears in the definition of the GIAOs). Gauge invariance is again
not ensured, as invariance is only guaranteed with respect to shifts in the gauge
origin R, but not with respect to more general gauge transformations. Fast basis
set convergence is achieved, because the GIAOs are constructed in such a man-
ner that they provide exact first-order solutions in the presence of the magnetic
field provided the corresponding AO is the correct zeroth-order solution.2? One
can argue that the GIAOs already take care of the major effect of the magnetic
field perturbation on the wavefunction and that the remaining corrections in MO
coefficients, CI coefficients or CC amplitudes are rather small and easily described
within the standard techniques.

The fast basis set convergence of GIAO calculations of shielding constants is
demonstrated in Fig.4.

We add a discussion on some technical aspects which are best explained in the
picture of field-dependent basis functions. As the basis functions now explicitly
depend on the magnetic field B, differentiation of the usual unperturbed one- and
two-electron integrals necessarily involves additional terms. While a conventional
approach just requires the integrals

0 h v ieh
(%) = =5 Xl (r X V)ilxw) (89)
Oxulhlxv) _ deh, [(r—Rg)x V)
( OmK; ) eony  MC Ord Ir — Rg|3 Ixv) (90)
O {Xulhxv) e’ r-(r—Rg)dij —ri(r — Rg);
I \XuliXv) _ ) ,
( 0B;0mg )com 2mc? Xl Ir — Rg[? Ixv) (91

Tt should be noted that the GIAOs were originally named in a somewhat misleading manner as
gauge-invariant or gauge-independent atomic orbitals. Following a suggestion by Bouman and
Hansen”® the more appropriate name gauge-including atomic orbitals has become standard since
the beginning of the nineties.
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Fig. 4: Comparison of the basis set convergence in common gauge-origin and GIAO cal-
culation of the "H shielding constant of hydrogen fluoride.

the dependence of the basis functions on B leads to following additional integrals.

(Zouhcd)  _ (Salibed) oy B 1 o) o)

(2]} _ (2hultho -
8771[(1' GIAO 8771[(1 conv
O (xulhlx.) _ (9 xulhxo) B @<8X,u | [(r —Rk) X V]; o)
0B;Omg ; GIAO OBiOmg; ).~ mc OB; r — Rkl v
ieh ,  [(r —Rg) X V]; Oxy
me Xl r — Rkl |8Bl-> (94)

8<X,uXV|XGXp> _ IXu %
( 831 GIAO - <8Bl XV|X0'XP> + <X,u 831 |XOXp>

OXo .0
00l o) + (o lehio 522) (95)

For a long time, efficient calculation and handling of these integrals (and here in
particular of the additional two-electron integrals) was considered a major problem
in the application of the GIAO approach. However, Pulay pointed out that the
additional integrals are closely related to usual geometrical integral derivatives®3

and how modern analytic derivative techniques can be used to design an efficient
GIAO code at the SCF level.8°
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Table 5. Available implementations for the calculations of NMR chemical shifts

quantum chemical methods Ref.
IGLO Kutzelnigg and Schindler (1982) ™
LORG Bouman and Hansen (1985) 76
GIAO-SCF Ditchfield (1974), Wolinksi,Pulay, Hinton (1990) 79,80
MC-IGLO van Wiillen and Kutzelnigg (1993) 92
GIAO-MCSCF  Ruud et al. (1994) 87
GIAO-MP2 Gauss (1992) 85,86
GIAO-MP3 Gauss (1994) 88
GIAO-MP4 Gauss, Stanton (1994,1996) 88,91
GIAO-CCSD Gauss, Stanton (1995) 89,90
GIAO-CCSD(T)  Gauss, Stanton (1996) o1
GIAO-CCSDT-n  Gauss, Stanton (2000) 29
DFT-IGLO Malkin et al. (1993) 94
SOS-DFPT Malkin (1994) 95
GIAO-DFT Schreckenbach and Ziegler (1995), Handy et al. (1995), 96:99
Pulay et al. (1996), Cheeseman et al. (1996) 97,98
SOLO Bouman, Hansen (1990) 93

3.7 Awdgilability of methods for the calculation of NMR chemical shnifts

Before discussing available methods for the efficient calculation of NMR chemical
shifts, let us add a few historical remarks. The suggestion of using gauge-including
atomic orbitals goes back to London”” who has used them in a study of molecular
diamagnetism more than 50 years ago. At the end of the fifties, GIAOs were
used by Hameka in SCF calculations of shielding constants for a few diatomic
molecules”™ and in the seventies by Ditchfield.” However due to technical problems
in calculating and handling integral derivatives, Ditchfield’s work had only limited
impact. The breakthrough with respect to applicability was the IGLO development
by Kutzelnigg and Schindler.”® "> By introducing local gauges for localized orbitals,
the problem of additional two-electron integrals was avoided in a rather elegant
way and calculations of chemical shifts for larger, chemically interesting molecules
became possible. Noteworthy are in particular the numerous applications of the
IGLO approach in carbocation chemistry by Schleyer and co-workers.%4 The LORG
approach was suggested somewhat later within the random-phase approximation
(RPA) context, but has been shown by Kutzelnigg™ to be closely related to IGLO.
The popularity of the GIAO approach in the nineties started with Pulay’s seminal
work.8% As the GIAO approach can be considered the most elegant way to deal with
the gauge problem, it has been adopted by most groups and implemented in many
quantum chemical program packages for the calculation of magnetic properties.
Table 5 lists the currently available schemes for the calculation of NMR chem-
ical shifts. Note that we include only those approaches which take care of the
gauge-origin problem via local gauge-origin methods and ignore all other develop-
ments, as they cannot be considered well suited for most chemical applications.

31



At the HF-SCF level, three variants are available: GIAO-SCF,7:80 IGLO,”*7 and
LORG" and all three schemes yield results of similar quality. However, imple-
mentations at correlated levels were mainly pursued using GIAOs. Methods for
the calculation of NMR chemical shifts were implemented within most of the stan-
dard methods for electron correlation using GIAQs.8-86,87,88,89,90.91,29 GTAQ-MP2
(also known as GIAO-MBPT(2)) provides the largest range of applicability, GTAO-
CCSD(T) is a tool for highly accurate prediction of NMR, chemical shifts, while the
complementary GIAO-MCSCF treatment allows to tackle difficult cases with large
static correlation effects. On the other hand, IGLO was generalized to MCSCF
wavefunction models (MC-IGLO)%? and the LORG scheme to second-order LORG
(SOLO).%3

Naturally, there has been also a great interest in calculating NMR, chemical
shifts using DFT approaches. From a pragmatic point of view, very promising re-
sults have been so far obtained,?49%:96,:97,98,99,100,101 b4 it is necessary to add a few
remarks. First, it needs to be realized that the Hohenberg-Kohn theorems do not
hold in the presence of a magnetic field. They need to be extended (as described by
Vignale and Rasolt!%?) to include current-dependent functionals. Most implemen-
tations, however, ignore that fact and treat magnetic properties by what is called
uncoupled DFT. A justification for this choice might be seen in the work of Lee
et al.”? who showed that inclusion of the current does not necessarily improve the
results.” Second, to rectify some problems in the uncoupled DFT approach (which
certainly is incomplete from a formal point of view ) Malkin et al. suggested an
ad hoc modification of the energy denominator within their SOS-DFPT scheme. %?
Though the results give some justification for this empirical modifcation, it must
be clearly stated that there is no rigorous theoretical justification for Malkin’s ap-
proach and that a similar manipulation would not have been accepted within the
more conventional approaches. Nevertheless, it can be anticipated that DFT treat-
ments of NMR chemical shifts are of great practical importance and will become a
routine tool within quantum chemistry.

We will complete our discussion by emphasizing some algorithmic developments
in chemical shift calculations aiming at the treatment of larger systems. Implemen-
tation of direct methods for GIAO-SCF %4 or IGLO'%° paved the path for the rou-
tine treatment of molecular systems with up to 100 atoms. Integral-direct concepts
have also been extended to the GIAO-MP2 approach.'% Together with an effi-
cient treatment of molecular point-group symmetry,'%” thus GIAO-MP2 chemical
shift calculations became possible on molecules with more than 50 atoms described
by more than 600 basis functions. However, as the CPU requirements remained
unchanged, it appears attractive to couple such integral-direct developments with
other ideas such as, for example, the local-correlation treatment first suggested by
Pulay'%® and recently pursued by Werner and co-workers.'%? Based on a prelim-
inary implementation, test calculations have recently demonstrated that a local
GIAO-MP2 (GIAO-LMP2) scheme should hold great promises for the treatment of
larger molecules.!1?

Other active areas where methodological developments concerning chemical

kFor a different concept for the treatment of magnetic properties within DFT, see the work by
Harris et al.103
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Table 6. Calculated absolute shielding constants (in ppm)

Molecule  Nucleus Oe o0 c(300K) o(300K, exp.)
H, H 26.667  26.312 26.298  26.288+0.002
HF H 28.84 28.52 28.48 28.54+0.01

19F 419.6 409.6 409.2 409.6+1.0
CcO 13C 4.2 1.9 1.8 0.940.9
170 -54.3 -60.4 -60.6 -44.8+17.2
N, 15N -58.4 -62.5 -62.7 -61.6
F, 9% -189.9 -220.8 -225.5 -233.02+1.0

shift calculations are pursued are the treatment of relativistic effects (important
for heavy elements),!11:112:113,114,115 the routine calculation of rovibrational effects
(important to improve agreement between theory and experiment)*!6:117 and the
consideration of solvent effects.!!8:119:120 The latter is of special importance, as the
majority of the NMR spectra is measured in solution or the liquid phase.

3.8 FEzxamples for chemical shift calculations

We will give a few examples to demonstrate the range of applications which are
possible with the currently available methods for computing chemical shifts. Table
6 reports computed absolute shielding constants needed for establishing absolute
NMR scales.!1® In order to provide accurate data, it is here essential to use the
GIAO-CCSD(T) methods in combination with large basis sets. The error in the
computed absolute shifts of any of the other methods is too large in order to provide
reliable data. In addition, consideration of rovibrational and temperature effects
is mandatory. To emphasize the importance of such calculations, we note that the
current 170 scale is based on calculations,!'® as the corresponding experimental
scale (based on measured spin-rotation constants) appears to be inaccurate.

For most chemical applications, computation of relative shifts is of central im-
portance. In case of the following vinyl cation

it turned out that GIAO-CCSD(T) calculations were essential to provide an un-
equivocal assignment.'?! GIAO-HF-SCF and GIAO-MP2/GIAO-MBPT(2) calcu-
lations are too inaccurate and only a high-level correlation treatment provides suf-
ficient accuracy. The computed spectra are displayed in Fig. 5
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Fig. 5: Calculated and experimental *C NMR spectra for the 1-
cyclopropylcyclopropylidenemethyl cation

Another example is the 27Al NMR spectrum of the Al;Cp, molecule (Fig. 6)
122

measured by Schnockel and co-workers.

Fig. 6: Structure of Al4Cps
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The spectrum was unequivocally assigned to the tetrameric to the tetrameric species
on the basis of the computed 27Al chemical shifts,'??197 as the experimental value
of -111 ppm agrees well with the computed value of -108.5 (GIAO-MP2). Corre-
lation effects amount in this case to about 15 ppm and, thus, are not negligible.
The computational cost for the required GIAO-MP2 calculations have been rather
demanding. Using a parallel version of the integral-direct program described in
Ref. 107, the calculation (44 atoms, 192 electrons, 548 basis functions, molecular
symmetry: Dog) required about 6 days. on a SGI Power Challenge (4 nodes).

A final example deals with an application of chemical shift calculations in com-
bination with solid-state NMR, measurements. GIAO-SCF' calculations on dimeric
and trimeric units of hexabenzocoronene sheets (Figure 7) enabled an assignment
of the measured 'H NMR. chemical shifts.!?4

Computed 'H-NMR shifts: 5.9 / 7.4 / 8.7 ppm

Fig. 7: Dimeric and trimeric units of HBC. The experimental chemical shifts for the
aromatic protons in the investigated solid HBC derivative are 5.7, 6.9, and 8.3 ppm.'?3

The aromatic proton signal splits in the solid state into three peaks (5.7, 6.9,
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and 8.3 ppm). 123 This allows an assignment of the experimental spectra to a specific
structural model by comparision with computed shifts for various model systems. 124
For the structure shown in Fig. 7, the best agreement is obtained between calcula-
tions and measured values.

3.9 Indirect spin-spin coupling constants

Besides the computation of NMR chemical shifts, theoretical prediction of indirect
spin-spin coupling constants Jxr, is equally important for a full understanding and
assignment of experimental NMR spectra. The coupling constants are given as the
corresponding second derivatives of the electronic energy with respect to the
involved nuclear spins

JKL = o Y (96)

It can be shown that there are four contributions to Eq. (96). The first (and for CC
and CH coupling constant dominating) term is the Fermi-Contact (FC) contribution
described by the following perturbed Hamiltonian

oh 2me* grc ge
=TI 5(r — . 97
(8]Ki>pc 3mM,c? o —ri)s (97)

The second term describes the spin-dipole (SD) interaction:

Oh _ e%grge (ri—rg)’s—3(s- (r; —rg)(r; —rg)
ki) sp - AmM,c? |r; — rgl® '

(98)

Third and fourth terms finally represent the so-called diagmagnetic and paramag-
netic spin-orbit (DSO and PSO) contributions with

O\ gkere! (ror) (rorn)oy — (o rR)i(e T o
Or;0IL; ) poy  SmM2ct r —rg|3r—rg|3
and
. g B _
oh _ e hgk [(r — Rk) x V]J' (100)
Ax; ) pso mM,c? r — Rkl

In Egs. (97) to (100), s denotes the operator for the electron spin, m the electron
mass, M, the proton mass, gk the g factor of the Kth nucleus, and g. the g factor
of the electron.

Though calculation of Jx 1, is not hampered by the gauge problem, its calculation
is actually even more problematic. First of all, the FC and SD terms represent so-
called triplet operators (note the appearance of the electron spin s in the expressions
given in Egs. (97) and (98)). The calculation of these contributions to Jg is thus
affected by triplet instabilities of the wavefunction and accordingly the HF-SCF
approach turns out to be useless in many cases.!?® Second, there are a total of
10 perturbations per nucleus which renders computation of the complete set of
spin-spin coupling constants expensive. Third, the basis set convergence in the
calculation of the FC term is rather slow,126:127:128 a5 the appropriate representation
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of the delta function operator in the FC contribution in terms of Gaussians is
demanding.

As the HF approach fails in most cases, promising results have been so far
only obtained at correlated levels. MCSCF calculations!?%139 as well as CCSD
calculations'®!:132 have been shown to provide reliable theoretical data for these
properties. However, both schemes are hampered in the application to larger
molecules by high computational requirements.

Therefore, DF'T might offer a pragmatic alternative. A first implementation by
Malkin et al.'?3 unfortunately ignores the SD term which in some cases has been
proven to be important. Further work is required before a final conclusion concern-
ing the applicability of DFT in the calculation of spin-spin coupling constants can
be given.

4 Frequency-dependent properties

4.1 General theory

While analytic derivative theory is sufficient for the theoretical treatment of time-
independent (static) properties, the underlying theory needs to be extended for the
calculation of time-dependent (dynamical) properties. In particular, the fact that
there is — unlike for the static case — in the time-dependent case — no well-defined
energy explains why the simple derivative theory discussed so far is not applicable.

Nevertheless, there is large interest in the calculation of dynamial properties.
The main examples comprise frequency-dependent polarizabilities and hyperpolar-
izabilities which are the key quantities in the area of non-linear optics.34:135

Starting point for the discussion of dynamical properties necessarily is the time-
dependent Schrédinger equation’

H(OW) = 2 0) (101)

with the Hamiltonian H consisting of the usual time-independent molecular part
Hy and a time-dependent perturbation V (¢):

H(t) = Hy+ V(). (102)

For V (t), one generally assumes that it can be written as a sum of periodic pertur-
bations
N

V()= Y exp(—iwit) Y ex(wr)X (103)

k=—N X

with wy as the frequencies and ex (wy) and X denoting the corresponding pertur-
bation strengths and operators. For a periodically oscillating electric field (the
most common example), X is the dipole operator p and €x (wy) the corresponding
electric field strength.

As V(t) has to be Hermitian, the following relations must hold:

X=X, (104)

! Atomic units are used here and in the following.
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W = —Wk, (105)

and
€% (wr) = ex(wg)- (106)
Eq. (103) for V(¢) can thus be rewritten as
N
V(t) =¢e0)X +2 Z cos(wyt) Z Re(ex (wg))X + 2sin(wgt) Z Im(ex (wk))X
k=1 X X
(107)

i.e., in a more common form with the perturbations given in terms of real sine and
cosine functions.
The expectation value of an operator X can now be given in the form ™

(X)) = (X)o + D exp(—iwr,t) Y (XY ), v (wry)

k1 Y

1 .
+3 > exp(—i(wry +wia)t) D X3V, 2, i, oy € (Wi ez (Why ) + -
kiko Y.,Z

(108)

with the linear response function ((X;Y’)), , the quadratic response function
(X3Y, Z))wi, wi, )» €tc. characterizing the time dependence of (X). Eq. (108) can
be interpreted as an expansion of (X) with respect to the Fourier components of
the perturbation V' (¢). The response functions are denoted by ({(...)). The operator
before the semi-colon represents the operator for which the expectation value is
computed, while the operators after the semi-colon denote those which are involved
in the Fourier components of V(¢). The frequencies given as subscript are those
connected with the perturbation operators Y, Z, ...
For the specific case of X = u;, Eq. (108) takes the form

(i) (t) = (psdo + > _ exp(—iwg, t) Z 0 (W, ; Wy ) €5 (Why )

k1 J

1 .
+3 ;}; exp(—i(wk, + wk,)t) z};ﬂz‘jk(—wkl = Why} Why » Why ) €5 (Why )€k (W, )
1,K2 J

+o (109)

with a;;(—w;w) as the tensor elements of the frequency-dependent polarizability,
Bijk(wi; we, ws) as the tensor elements of the frequency-dependent first hyperpolar-
izability, etc. Table 7 gives an overview about the various types of polarizabilities
and hyperpolarizabilities as well as their relationship to physical effects (for a more
detailed discussion see, for example, Ref. 135. It is important to note in this context
that the sum of the frequencies (with explicit consideration of signs!) determines
the frequency of the corresponding contribution in the expectation value expression.
For example, in case of the SHG hyperpolarizability, the resulting contribution to
the dipole moment has twice the frequency of the originally perturbing field.

™Note that we assume that this operator is included in the perturbation V (¢).
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Table 7. Definition and physical relevance of the various (frequency-dependent) polarizabilities
and hyperpolarizabilities

(hyper)polarizability —physical effect

a(0;0) static polarizability
a(-w;w) frequency-dependent polarizability
£3(0;0,0) static first hyperpolarizability
B(—2w; w,w) second harmonic generation (SHG)
B(—w;w,0) dc-Pockels effect (dc-P);
electro-optical Pockels Effect (EOPE)
B(0; w,w) optical rectification (OR)
~(0;0,0,0) static second hyperpolarizability
~v(Bw; w, w, w) third harmonic generation (THG)
¥(2w; w, w, 0) de-second harmonic generation (de-SHG);
electric field induced SHG (EFISH or ESHG)
v (—ww, —w,w) intensity-dependent refractive index (IDRI);

degenerate four wave mixing (DFWM)
v (—w1;wi, —wa,ws)  ac-Kerr effect (ac-K);
optical Kerr effect (OKE)

v (—w;w,0,0) de-Kerr effect (de-K);
electro-optical Kerr effect (EOKE)
v (0w, —w, 0) dc-optical rectification (de-OR);

electric field induced optical rectification (EFIOR)

It can be shown that the response functions in Eq. (108) and thus the frequency-
dependent properties of interest can be determined as derivatives of the so-called
time-averaged quasi energy.'3% The latter is given as

- 9. -
Q(t) = (V|(H — iz )[¥) (110)
with the phase-isolated wavefunction
W) = exp(—iF (1)) (111)
with
dF(t) = 0=
E = @ - i) (112)

defined in such a way that it coincides in the static case with the usual time-
independent wavefunction. Time averaging of Q(t) is performed in such a manner

T/2

QW= im = [ Quar (113)

im —
T—inf T J_1/9

that T' corresponds to multiples of all periods of the considered perturbations.
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It can be then demonstrated that the expectation value (X)q corresponds to
the first derivative of {Q(t)} with respect to the corresponding field strengths™

d{Q}r
X))o = 114
(X0 = G0y (114)
the linear response function to the corresponding second derivative
*{Q}r
XY N, = 115
(XY ))wn, dex (@o)dey (o) (115)
with
wo ::_%Ukla (116)
the quadratic response function to the corresponding third derivative
P{Q}r
XY, 20 o, = 117
{ Dy de x (wo)dey (Wi, )dez (wi,) (117)
with
Wy = —Wk, — Wky, (118)

etc. Time-averaging is essential in order to obtain these simple expressions for the
response functions. The trick is that time averaging extracts the relevant terms
from the quasi-energy Q(t) and enforces proper matching of frequencies (as seen in
Egs. (116) and (118)).

The time dependent variation principle can be rewritten in our case as

5{Q}r = 0. (119)

To obtain explicit equations for the wavefunction parameters, it is convenient to
expand them in terms of the Fourier components of the perturbations

et) = O + Zexp(—iwklt)c(l)(wkl)

k1
+ Z exp(—i(wi, + wiy 1) (Wi, Wiy ) + - (120)
k1ko
and then require fulfillment of the variational condition (Eq. (119)) for each order
of the perturbation. This yields in first order

NHQ}r
Oc(0)
which is identical to the usual time-independent stationarity condition for c¢. In
higher orders, the following conditions are obtained

=0, (121)

d HQyr \
dﬁX ((,4.)1) (80(1)(&)2)) =0 (122)
with w1 = —W2
d? NHQ}r _
dex (w1 )dey (wo) (a(;(z)(wg,%)) =0 (123)

"Note that all derivatives are taken at the point ex(w) = 0,ey (w) =0, ...
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with w1 + wy = —w3 — wy, etc.

For non-variational wavefunction parameters, the same technique as in the static
case is used. Accordingly, the derivatives of Q(t) in Egs. (114) to (123) are replaced
by the corresponding derivatives of an energy functional Q(t) (in Ref. 136 called
the Lagrangian L(t)) with the latter obtained by augmenting Q(¢) with the corre-
sponding time-dependent equations (g(c,t) = 0) for the wavefunction parameters

Qt) = Q(t) +Ag(c,t) (124)

Note that in this case, it is sometimes necessary to symmetrize the corresponding
expressions for the response functions in order to ensure proper symmetry rela-
tions (for a detailed discussion see, for example, section 2.C and 3D of Ref. 136).
The symmetrization needs to be carried out with respect to simultaneous complex
conjugation and inversion of the sign of the involved frequencies.

With Egs. (108) to (124), the required theory (usually referred to as response
theory) for the calculation of frequency-dependent properties is summarized. The
given expressions differ from those in the static case mainly by the fact that the
energy (the key quantity for static properties) is replaced by the corresponding
time-averaged quasi-energy (the key quantity for dynamical properties). However,
the same techniques as in the static case, i.e. (2n+ 1) and (2n + 2) rules, can be
used to deduce computationally efficient expressions for the calculation of dynamical
properties.

4.2 Specific examples

As first example, the computation of frequency-dependent polarizabilities at the
closed-shell HF-SCF level will be sketched. The corresponding quasi-energy is given
in that case by

QW) = Y Py + 2 33 Puut) Poo(t) (lop) — 5 o)

wv op

. % Ocui
—z§ E cui(t)sﬂua—g. (125)
1 pv

In comparison to the usual HF-SCF energy expression (Eq. (19)), we note that
in Eq. (125) MO coefficients (and thus also the density matrix elements) carry an
explicit time-dependence and that there is one additional term, namely the one
which involves the time derivative of the MO coefficients. As we need to ensure the
orthonormality of the MOs, the appropriate starting point is given by the following
functional

Q) =Q(t) =2 e Y chiSuvcu; (126)
[ g

where we augment the quasi-energy by the orthonormality constraint multiplied
with the corresponding, now time-dependent Lagrangian multipliers €;;
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Following Eq. (120), the MO coefficients ¢,,;(t) are expanded in terms of the
Fourier components of the electric field perturbations

cui(t) = cui + Y exp(—iwg, t)ely (i) + Y exp(—i(w, + wi ) E)el (Why , why) + ...

k1 ki1ko
(127)
=cui+ Z exp(—iwy, t) Z €x (wkl)cffl- (W)
X
+ ) exp(—i(wr, +wis)t) Y ex (Wr)ey (Wis)en: @iy wiy) + o (128)
K1 ko XY

Thus, the perturbed coefficients ¢;; (w, ), ¢y (Wk, , W, ), - completely characterize
the time-dependence of the HF wavefunctron Furthermore, as common in CPHF
theory, these expansion coefficients are expanded as follows in terms of the unper-
turbed MO coefficients

i (W) = ZC#ZDU;{ (w) (129)

with the Uy (w) as the actual parameters to be determined in the calculation.
Similar parametrizations are also used for the higher-order MO coefficients.

Differentiation of {Q(t)}7 with respect to electric field components € x (w;) and
ey (w2) yields then for the frequency-dependent polarizability

axy (Wi wy) = —QZZUY —wo) B — 222}15@2 (130)

with
w1 = —W2 (131)

Corresponding expressions for the hyperpolarizabilities can be found in the litera-
ture. They are most conveniently derived using the (2n + 1) rule.

The required coefficients UZX (wg,) are determined via the so-called time-
dependent HF (TDHF) equations which are obtained by differentiating the quasi-
energy with respect to MO coefficients c( ) and the corresponding electric field
strengths ex (w1). After some rearrangements the following equations are obtained®

Z(2<am|ie> — (amlie) — w) )+ Z (aelim) — (aelmi) )UK, (—w) = —h2
Z(2<am|ie> — (amlie) + w) )+ Z (aelim) — (ae|mi))UX (w) = —h2
(132)

which can be solved in the usual iterative manner. The TDHF equations resemble
very much the usual CPHF equations (compare Eq. (31)). Indeed, the CPHF
equations for electric perturbations are obtained in the static limit (w — 0), in
which UX (w) = UX(—w). Note that for the time-dependent case, the perturbed

°Note that for electric perturbations Ui)j{ is zero.
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coefficients for w and —w, i.e. UX(w) and UX (—w) couple and need to determined
together.

As a second example, we discuss the computation of frequency-dependent prop-
erties within CC theory. The appropriate starting point is here the following quasi-
energy functional

Q(t) = (O[(1 + A(t)) exp(=T(t))(H — i%) exp(T(t))[0)- (133)

obtained by augmenting the CC quasi-energy with the time-dependent CC equa-
tions multiplied by the time-dependent Lagrangian multipliers A, (¢). Orbital relax-
ation contributions are in Eq. (133) not considered. While for most static properties
(geometrical derivatives, magnetic properties, i.e., in general all properties for which
perturbation-dependent basis functions are used) inclusion of orbital relaxation is
mandatory, the opposite is true for dynamical properties. A closer analysis reveals
that a correct pole structure (see the discussion in Ref. 136) is only ensured if
orbital relaxation effects are treated via the single excitations (77) in an indirect
manner and not explicitly included. Explicit consideration of orbital relaxation
on the other hand would lead to additional (artificial) second-order poles!3® and
thus to an unphysical behaviour of the response functions. A further advantage of
the so-called unrelazed approach is that theory as well as corresponding computer
implementations are considerably simplified.

For the frequency-dependent polarizability, the following expression is obtained
in CC theory

axy (—w;w) = —(0[(1 + A)[eXp(—T)g—;[ exp(T), T ()]0)

—(0/(1 + A)[[exp(=T)H exp(T), T¥ (~w)], T* (w)]]0) (134)

with the perturbed cluster operator T (w)? determined as solution of the following
equations

0= (@] exp(~T) T2 exp(~T)[0) + (&, fexp(~T)(H — ) exp(T), T (@)]0).
(135)

Corresponding expressions for first and second hyperpolarizabilities have been given
in the literature. 147,148,151

4.8 Awvailable implementations

The time-dependent HF scheme for the calculation of frequency-dependent prop-
erties has been implemented by Sekino and Bartlett'3” in the eighties employing
a general formulation that allows computation of arbitrary polarizabilities and hy-
perpolarizabilities. This development was later followed by other implementations
(see, for example, Refs. 138 and 139); all of them nowadays allow the routine com-
putation of frequency-dependent properties at the HF-SCF level. Concerning the
treatment of electron correlation, a first major effort has been made by Rice and

PIn line with Eq. (120), TX (w) is defined via the first-order term in the Fourier expansion of T'(t).
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Handy'? to derive and implement frequency-dependent polarizabilities at the MP2
level. As amply discussed in the literature, a correct formulation and implementa-
tion of MP2 frequency-dependent polarizabilities (within response theory) has been
only achieved later.!41:142 MP2 calculations of first and second hyperpolarizabilities
have recently been reported by Kobayashi et al.!43

At the CC level, response theory was first formulated by Monkhorst'44 in 1977.
A first implementation for the computation of frequency-dependent polarizabili-
ties was reported in 1994 within the CCSD approximation.® An earlier simplified
variant based on an equation-of-motion CC ansatz'#® has turned out less satisfy-
ing, as it lacked the important property of size extensivity. CCSD calculations for
hyperpolarizabilities were first presented by Hittig et al.'71® in 1997 and 1998.
Concerning inclusion of triple excitations, it is important to recognize that the
otherwise highly popular CCSD(T) ansatz is not well suited for the calculation of
unrelaxed properties. Considering this, Christiansen et al. devised a new hier-
archy of CC models™? for the calculation of dynamical properties of CCS, CC2,
CCSD, C(C3, ... CCS only includes single excitations (CCS energies are identical
to the corresponding HF-SCF energies, higher-order response-properties, however,
differ), CC2 truncates the doubles equations to lowest order CCSD involves a full
treatment of single and double excitations, while CC3 includes for the first time
triple excitations with the triples equations truncated to lowest order. To ensure
an adequate treatment of orbital relaxation, it is mandatory in this hierarchy of CC
models to consider single excitations (T7) — contrary to usual perturbation argu-
ments — as zeroth order. CC3 implementations for the computation of dynamical
polarizabilities and hyperpolarizabilities have recently reported by Christiansen et
al.150:151 and for the first time allow near-quantitave predictions for these type of
properties (see, for example, Ref. 152).

Finally, it should be mentioned that a lot of effort has been also devoted to
compute frequency-dependent properties at the MCSCF level'53:154:155 and that
there is — as for other properties — also a great interest in DFT computations
of these properties employing time-dependent DFT techniques (see, for example,
Ref. 156).

4.4  Fxample

As an example for the computation of frequency-dependent properties, we show in
Fig. 8 the dispersion curve for the refractive index n of No. The latter is related to
the (frequency-dependent) isotropic polarizability @ via

n =14 27 a(wN. (136)

Fig. 8 compares results obtained at SCF and various CC levels? with those from
experimental investigations.'®” It is clearly seen how the results improve (in com-
parison with experiment) within the CC hierarchy and that CC3 yields by far the
best agreement with experiment.

9All calculations have been carried out for r(NN) = 2.068 bohr with the aug-pVQZ basis.
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Fig. 8: Refractive index of Ny as calculated at SCF and various CC levels in comparison
with experiment.

5 Summary

The basic concepts for the quantum chemical calculation of molecular properties
have been discussed. Focussing on properties specific to a given electronic state,
analytic derivative techniques are the essential prerequisite for the accurate and
efficient computation of the required energy derivatives. Analytic derivatives tech-
niques have been proven especially important for the computation of magnetic
properties. Problems inherent to their calculation such as gauge-origin dependence
of the results and slow basis set convergence are best dealt with by using GIAOs,
i.e. explicitly magnetic-field dependent basis functions.

The derivative approach to molecular properties can be also extended to dy-
namical properties. In the framework of response theory, these kind of properties
are computed via the corresponding derivatives of the so-called time-averaged quasi
energy. As the expressions for dynamical properties coincide in the zero-frequency
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limit with those for the corresponding static properties, response theory represents
a unifying concept for molecular properties that covers both the static and dy-
namic case but also enables computation of excitation energies (via the poles of
the response functions) and transition strengths (via the residues of the response
functions at the poles).

The importance of the presented concepts can be hardly overestimated, as com-
putation of molecular properties plays a major role in almost all modern applica-
tions of quantum chemistry. In this way, it is certainly justified to consider the
introduction of analytic derivative techniques (Pulay’s paper on HF-SCF gradients
in 1969) as an important mile stone in quantum chemistry. There also is no doubt
that computation of molecular properties as well as method development in this
area of quantum chemistry will remain important topic in the future.
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