John von Neumann Institute for Computing Nlc

Computing Derivatives of Computer Programs

Christian Bischof and Martin Blcker

published in

Modern Methods and Algorithms of Quantum Chemistry,
Proceedings, Second Edition, J. Grotendorst (Ed.),

John von Neumann Institute for Computing, Julich,

NIC Series, Vol. 3, ISBN 3-00-005834-6, pp. 315-327, 2000.

© 2000 by John von Neumann Institute for Computing

Permission to make digital or hard copies of portions of this work for
personal or classroom use is granted provided that the copies are not
made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise
requires prior specific permission by the publisher mentioned above.

http://www.fz-juelich.de/nic-series/

COMPUTING DERIVATIVES OF COMPUTER PROGRAMS

CHRISTIAN H. BISCHOF AND H. MARTIN BUCKER

Institute for Scientific Computing
Aachen University of Technology
D-52056 Aachen
Germany
E-mail: {bischof,buecker} @sc.rwth-aachen.de

Automatic differentiation is introduced as a powerful technique to compute deriva-
tives of functions given in the form of a computer program in a high-level program-
ming language such as Fortran, C, or C++4. In contrast to traditional approaches
such as handcoding of analytic expressions, numerical approximation by divided
differences, or manipulation of symbolic algebraic expressions by computer algebra
systems, automatic differentiation offers the following substantial benefits: it is ac-
curate up to machine precision, efficient in terms of computational cost, applicable
to a 1-line formula as well as to a 100,000-line code, and can be produced with
minimal human effort.

1 Introduction

Numerical simulations arising in large-scale scientific applications such as quantum
chemistry often require the evaluation of derivatives of some objective function. An
example is given in this conference proceedings' where the need for derivatives in
quantum chemical calculations of molecular properties is demonstrated. Derivatives
play a crucial role not only in quantum chemistry but in numerical computing in
general. Examples include the solution of nonlinear systems of equations, stiff ordi-
nary differential equations, partial differential equations, and differential-algebraic
equations. Derivatives are also ubiquitous in the areas of sensitivity analysis of
computer models, inverse problems, and (multidisciplinary) design optimization.

Traditionally, such problems with derivatives have been addressed by using tech-
niques of numerical and analytical differentiation as discussed by Gauss'. Here, we
will discuss another powerful technique called automatic differentiation (AD) for
computing derivative information, say, gradients or Hessians. AD has been success-
fully applied®3, it is currently less well known than and sometimes confused with
symbolic differentiation. The purpose of this note is to call attention to automatic
differentiation, to provide some background information on the technique, and to
highlight its advantages over other techniques of differentiation.

To abstract from the particular area of interest, let

f:R" —-R™ with XYy

denote any vector-valued objective function whose derivatives are sought. We call x
the vector of independent variables and y the vector of dependent variables. In large-
scale applications, the objective function f is typically not available in analytic form
but is given by a computer code written in a high-level programming language
such as Fortran, C, or C++4. Think of f as a function computed by, say, one of
the modules of the TURBOMOLE program system to compute and analyze the
electronic structure of molecules*. Given such a representation of the objective

function f(x) = (y1(x), y2(x),. .. ,ym(x))T, computational methods often demand
the evaluation of the Jacobian matrix

i i
a—mlyl(x) e myl(x)
J(x) = : : e R™*" (1)
e} 9
at some point of interest x € R™.

A well-known and widely used approach for the approximation of the Jacobian
matrix is the use of divided differences (DD). For the sake of simplicity, we only
mention first-order forward DD but stress that the following discussion applies
to DD as a technique of numerical differentiation in general. Using first-order
forward DD, one approximates the ith column of the Jacobian matrix Eq. (1) by

f(x+ hie;) — f(x)
o) - J6, @)

where h; is a suitably chosen step size and e; € R™ is the ith Cartesian unit vector.
An advantage of the DD approach is that the function f needs to be evaluated
only at some suitably chosen points. Roughly speaking, f is used as a black-box.
The main disadvantage of DD is that the accuracy of the approximation depends
crucially on a suitable choice of these points, that is, of the step size h;. However,
any strategy to determine a step size faces the dilemma of mutual influence of
truncation and cancellation error: The step size should be small to decrease the
error of Eq. (2) in approximating Eq. (1) even if infinite-precision arithmetic were
used; the step size should be large to avoid cancellation of significant digits when
using finite-precision arithmetic in the computation of Eq. (2).

Another traditional approach for computing derivatives is handcoding of an-
alytic expressions. Here, an analytic expression for the Jacobian matrix J(x) is
identified first and then implemented by hand using any high-level programming
language. If care is taken, handcoding results in highly optimized implementations.
However, analytic expressions are not always available. Furthermore, handcoding
is smooth only for “simple” objective functions, is substantially error-prone, and
requires considerable human effort.

Computer algebra systems such as MACSYMA can, in principle, also be used
to find an explicit expression for the Jacobian matrix J(x). A disadvantage of
symbolic differentiation is that the length of the representation of the resulting
derivative expressions increases rapidly with the number n of independent vari-
ables. This property is extremely painful when higher-order derivatives are consid-
ered. For instance, the Hessian of an objective function of some complexity in more
than three variables can easily result in expressions filling several pages. More-
over, symbolic differentiation is inherently inefficient in terms of computing time,
because of the rapid growth of the underlying expressions. The reader is referred
to an article by Griewank® for a more detailed discussion of computing derivatives
symbolically. Another computer algebra system, Maple, is unusual in that it does
offer the additional option of automatic differentiation. However, the intention of
automatic differentiation of Maple procedures is the development of efficient pro-
grams in Maple and other programming languages (Fortran, C). On the other hand,

in this note we consider automatic differentiation for generating derivatives of large
production codes written in virtually any high-level programming language.

Automatic differentiation is another option for computing the Jacobian ma-
trix J(x). Virtually any computer program written in a high-level programming
language such as Fortran, C, or C4++ can be differentiated by this black-box mecha-
nism. Given a program for the evaluation of the objective function f, this technique
generates, in a completely automatic fashion, another computer program, called the
extended program, that evaluates f(x) and J(x) simultaneously. The key concept
behind AD is the fact that every computation, no matter how complicated, is ex-
ecuted on a computer as a (potentially very long) sequence of a limited set of
elementary arithmetic operations such as additions, multiplications, and intrinsic
functions such as sin() and cos (). By applying the chain rule over and over again
to the composition of these elementary operations, the extended program can be
generated accurately evaluating f(x) and J(x) up to machine precision. AD tech-
niques are discussed in a monograph® and a forthcoming book’. Differentiating a
computer program by AD meets all of the following requirements:

Reliability: The computed derivatives should ideally be accurate to machine pre-
cision. If the functional relation between x and y is not necessarily smooth,
the user should get a warning that something might be amiss.

Computational Cost: In many applications, the computation of derivatives is
the dominant computational burden. Hence, the amount of memory and run-
time required for the derivative code should be minimized as much as possible
and in any case be bounded a priori.

Scalability: The approach should give correct results for a 1-line formula as well
as a 100,000-line code.

Human Effort: Derivatives are a means to an end. Hence a user should not spend
much time in preparing a code for differentiation, in particular in situations in
which computer models are bound to change frequently.

Handcoding, divided-difference approximations, and symbolic manipulators fall
short with respect to the previously mentioned criteria. The main drawbacks of
divided-difference approximations are their numerical unpredictability and their
computational cost. In contrast, both the handcoding and symbolic approaches
suffer from a lack of scalability and require considerable human effort.

In the next section, we give a brief overview of automatic differentiation. Sec-
tion 3 discusses issues that arise in the design of software packages implementing
the AD technology. In Section 4, we discuss some issues concerning the use of AD
tools. In the last section, we summarize AD’s advantages and provide pointers to
AD tools.

2 Basic Modes of Automatic Differentiation

Traditionally, two basic approaches to automatic differentiation have been em-
ployed: the so-called forward mode and reverse mode, which date back to the

early sixties and seventies, respectively. These modes are distinguished by how the
chain rule is used to propagate derivatives through the computation. We briefly
summarize the main points about these two approaches; a more detailed description
can be found in the literature®6-8.

The forward mode propagates derivatives of intermediate variables with respect
to the independent variables and follows the control flow of the original program.
By exploiting the linearity of differentiation, the forward mode allows us to compute
arbitrary linear combinations J S of columns of the Jacobian matrix J. In matrix-
matrix multiplication, the symbol S denotes an arbitrary n x p matrix. The effort
required to compute not only the objective function but also J .S is roughly p times
the runtime and memory of the original program. In particular, when p = 1 and
thus the matrix S reduces to a vector s, we compute the directional derivative

o i L)~ 1)
h—0 h

where h is some step size.

In contrast, the reverse mode of automatic differentiation propagates deriva-
tives of the final result with respect to an intermediate quantity, so-called adjoint
quantities. To propagate adjoints, one must be able to reverse the flow of the pro-
gram and must remember or recompute any intermediate value that nonlinearly
affects the final result. In particular, one must store the intermediate values that
have been involved in nonlinear operations before they are overwritten or go out
of scope. Sometimes some of these intermediates can be recomputed during the
reverse sweep, but in any case one has to keep a log of the branch directions taken.

For an m x ¢ matrix W, the reverse mode allows us to compute arbitrary linear
combinations W7 .J of rows of the Jacobian matrix J with roughly ¢ times as many
floating-point operations as required for the evaluation of f. In a straightforward
implementation, however, the storage requirements may be proportional to the
number of floating-point operations required for the evaluation of f, as a result
of the tracing required to make the program “reversible.” When ¢ = 1 and thus
the matrix W7 reduces to a row vector w”, we compute the derivative w”J. The
reverse mode is particularly attractive for the computation of long gradients, as its
operations count does not depend on the number n of independent variables.

The forward mode can be naturally extended to second or third (and even
higher) derivatives, but the complexity grows like the square or cube p, respectively.
Especially for Hessian-vector products, a combined forward and reverse sweep is
attractive, since it still has essentially the same complexity as a single evaluation
of the underlying scalar function. In any case, automatic differentiation produces
code that computes derivatives accurate to machine precision®. The techniques of
automatic differentiation are directly applicable to computer programs of arbitrary
length containing branches, loops, and subroutines.

The weighting and combining of derivatives through the matrices W and S are
natural and useful for many applications, especially if sparsity in J can be exploited.
Unfortunately, many existing AD tools are (like computer algebra packages) still
exclusively oriented toward the evaluation of Cartesian derivatives, that is, the
partials of certain dependent variables with respect to certain independent variables.

3 Design of Automatic Differentiation Tools

Automatic differentiation can be viewed as a particular semantic transformation
problem: Given a code for computing a function, we would like to generate a code
that computes the derivatives of that function. To effect this transformation, two
approaches have been employed:

Operator Overloading: Modern computer languages such as C++ or Fortran 90
make it possible to redefine the meaning of elementary operators. We can, for
example, define a type for floating-point numbers that have gradient objects as-
sociated with them (let’s call this new type adouble), and for each elementary
operation such as a multiplication, we can define the meaning of the operator
“x” for variables of type adouble as follows. An assignment z = x * y not
only computes the product of x and y but also updates the associated gradient
object in a product rule fashion Vz = xVy 4+ yVzx. So, each occurrence of a
multiplication of two adoubles in the code will also effect the update of the
associated derivatives in a transparent fashion.

Source Transformation: Another way of changing the semantics of the code is
to rewrite it explicitly. For example, the assignment z = z %y is rewritten into
a piece of code that contains not only the computation of z but also an im-
plementation of the vector linear combination Vz = zVy + yVz, implemented
either as a do-loop or as a subroutine call.

Each of these approaches has its advantages and disadvantages. The advantages of
operator overloading are threefold.

Terseness: All that is required for a new data type, such as adoubles, is a new
class definition. While such a class definition can be substantial, comprising
several thousand lines of code, it hides this complexity from the user of an AD
tool.

Flexibility: If we want to change an implementation strategy associated with a
particular class, the source code remains unaffected. All that changes is the
class definition itself. So, for example, whether we compute first- or second-
order derivatives is reflected in the class definition but not in the code being
differentiated.

Full Access to Runtime Information: The reverse mode of AD requires the
ability to reverse the partial flow of program execution. One way to do this is to
use operator overloading to generate a tape that logs all the operations actually
performed, and use this tape as the input for a derivative interpreter, which
then can compute any derivatives desired using either the forward or reverse
mode of automatic differentiation. This approach is, for example, chosen in
the ADOL-C package®.

The drawbacks of operator overloading are the following

Lack of Transparency: While it is aesthetically pleasing that the source code
does not change, even though its meaning does, it does not aid in debugging,

since one has to deduce the meaning of the operations implied by the source
code and the associated class definitions.

Implementation Overhead: The actions associated with a class definition can
be viewed as an implied subroutine call, and although much progress has been
made recently in the compilation of operator overloading, the runtime overhead
of this technique can be substantial depending on the sophistication of the
compiler.

Dusty Deck Assimilation: Many existing computer codes are written in lan-
guages such as Fortran 77 or ANSI-C that do not support operator overload-
ing. In particular, assimilating large codes into the supposedly backwards-
compatible Fortran 90 or C++ languages turns out to be a thorny task.

On the other hand, the advantages of the source transformation approach are as
follows.

Simplicity of Generated Code: Since the derivative code is spelled out exactly,
usually in the same language as the input code, it is easier to follow the actions
of the derivative code as long as the chain rule is applied in a basic local
fashion. This simplicity also facilitates compiler optimizations and hence faster
execution of the generated code.

Dusty Deck Assimilation: The source transformation approach requires tradi-
tional compiler infrastructure such as parsers, generators and manipulators of
intermediate languages, and unparsers. These tools are readily available for
languages such as Fortran 77 or ANSI-C, at least in the commercial world.

Variable Scope: Operator overloading inherently sees one elementary operation
at a time. Source transformation approaches, on the other hand, have access
to the context of a particular computation and hence have more flexibility in
applying derivative rules. For example, the ADIFOR!'®!! and ADIC!? tools
view a program as a sequence of assignment statements, applying the reverse
mode at this level and the forward mode overall.

The disadvantages of the source transformation approach are the following.

Implementation Complexity: Source transformation approaches, at least at
the moment, require considerable tool infrastructure, in particular for the
processing of language-dependent features. Also, the lack of a standardized
language description makes changing the semantics of a particular automatic
differentiation tool a potentially rather involved task.

Code Expansion or Subroutine Interface Swell: A “pure” source transfor-
mation approach is infeasible when the action associated with a particular
statement exceeds a certain level of complexity. In this case, either the length
of the generated code grows too large for a compiler to digest, or rather ex-
tensive subroutine library interfaces must be maintained to encapsulate the
basic computational kernels. The latter approach, in many ways, is similar to
operator overloading, albeit considerably less elegant.

Of course, the relevance of these advantages and disadvantages depends to a great
extent on the particular application.

Given the mathematical underpinnings of the concept of derivatives, the “black-
box” application of an AD tool usually raises several questions that we briefly
address here.

Question: How do you know that the code represents a globally differentiable
function?

Answer: We don’t. AD computes the derivative defined by the sequence of as-
signment statements executed in the course of a function evaluation. Hence,
for a branch (if-statement), which potentially introduces a nondifferentiability,
AD will compute a one-sided directional derivative. This problem is further
discussed by Fischer!3.

Question: How do you deal with intrinsics?

Answer: Some intrinsics functions, such as abs() and sqrt(), are not differen-
tiable in all points of their domain. Some tools invoke an extension handler
flagging such occurrences; others ignore such occurrences.

Question: What happens when you differentiate through iterative processes?

Answer: It depends. AD generates a new iteration, and it is not clear a priori
whether the new iteration will converge and what it will converge to, although
empirically AD leads to the desired result. However, derivative convergence
may lag, or derivatives may diverge. For some commonly used approaches
for solving nonlinear systems of equations, this issue is discussed by Griewank
et al.'*. This problem clearly requires more research, but the emergence of
robust AD tools has made it possible to tackle this problem for sophisticated
numerical methods.

4 Using Automatic Differentiation Tools

Based on our experience with the ADIFOR!%:!! and ADIC'? tools for automatic
differentiation, this section explores some of the subtler issues related to the use of
AD and the implications for numerical software design. In particular, we focus on
the issues that arise from the fact that AD differentiates a given computer program
step by step, in a fashion that is oblivious of the overall semantics of a program.
This “myopic” view gives AD tools the power to deal with programs of arbitrary
length, but it also implies that users of AD tools may have to communicate some
of their knowledge to an AD tool to arrive at a desired solution. Specifically, we
illustrate the issues arising in the context of nondifferentiable language intrinsics
such as max () and numerical integrators.

4.1 Intrinsic Functions

Since the derivative of sin(z) with respect to z is given by cos(x), an AD tool might
transform the statement

y = sin(x)
into the derivative statement
Vy = cos(x) * V x.

Here, the notation Vy denotes the derivatives of variable y with respect to some
chosen set of variables. In this case, there is no difficulty, since sin() is everywhere
differentiable.

Most computer languages do, however, contain intrinsic functions that are not
differentiable in some points in their domain, as for example the Fortran 77 intrinsics
abs(x) and sqrt(x) when the value of the argument is zero. We call such a point
an “exceptional point.” We cannot simply claim that the function in question is
not differentiable, since a computer program executing such instructions may well
represent a smooth function, such as g(z,y) = \/2* 4+ y*. Moreover, intrinsics may
be used to guard against unphysical values of simulation parameters. For example,
in a weather model one might see code such as

rain = max(rain, 0.0).

This statement reflects the fact that rainfall cannot be negative and is intended
to convert a small negative number, which may have arisen from floating-point
roundoff, to the physically sensible number 0 (i.e., no rain).

The function max(zx, y) is not differentiable for z = y. However, in the previously
described case, it makes sense to define partial derivatives for the exceptional cases
as %ﬁmb:y := 1.0 and am%;;x’y)h:y := 0.0. These definitions do not change
Vrain when rain is set to zero in the induced AD statement
Omax(z,y)

ox

However, these definitions would not lead to the desired result if the order of argu-
ments in the max () call was reversed, namely,

Vrain = Vrain.

rain = max(0.0,rain).

In this case, the derivative of rain would be zeroed out when the value of the
variable was zero, and it would have been appropriate to exchange the definitions
of % and BBL;X. In other contexts, an argument could also be made for setting
%WHZZJ = 0.5 and Maa;(z’y)h:y = 0.5, since then automatic differentiation
provides a so-called subgradient, which is useful in nonsmooth numerical optimiza-
tion, as described, for example, by Clark®!®.

These examples demonstrate the following points:

i. No choice of derivative values for exceptional points will always be correct.

ii. There is no “automatic” way to decide what sensible choices are.

Given: parameter p, current time ¢, current solution x. ~ x(t, p),
suggested time step At.
1) Compute z1 =~ x(t + At,p) using Method A.
2) Compute x2 ~ z(t + At, p) using Method B.
3) Compute § = ||z — a2]| for some norm || - ||.
4) if (d(some given threshold)
Accept the higher-order of z; and 2
and update t « t + At.

else
At = g(At,0);
goto 1)
endif

Figure 1. Simplified Description of a Numerical Integrator

iii. User insight into the problem is essential.

Thus, potential users of AD tools need to be aware of these facts and provide
“hints” for an AD tool in the code to be eventually differentiated. Such hints are
particularly important for numerical libraries, since these codes typically embody
subtle numerics and will be reused often. To this end, the ADIFOR and ADIC
systems employ the completely user-customizable ADIntrinsics system for dealing
with Fortran and ANSI-C intrinsics. Surprisingly, in most cases the derivatives turn
out to be the ones intended without the need for derivatives intrinsics modifications.

4.2 Numerical Integrators

Another problem arises from the fact that an AD tool, when applied to a code
embodying a numerical method, will not only differentiate the solution produced
by this method, but also take into account the way by which one arrived at the
solution. As an illustration, consider a parameter-dependent initial value problem

z(p) = f(z,p,1t) with z(t = 0) = xo, (3)
where p is a parameter. Figure 1 shows a simplified version of the time-stepping loop
of a typical explicit numerical integrator with step size control. In this figure, the
notation Method A and Method B is used for two integration methods of different
order, and ¢ is some function that adjusts the time step At. For simplicity, we
ignore the fact that the time step will be adjusted upward if there is a good fit.

If, for a given p, we are interested in g_z 7> Where T'is the final time, we can
employ an AD tool to differentiate this code with respect to p. If we differentiate
with respect to p and use V to denote g—p, the chain rule of differential calculus
now implies that

dg
8(At) V(At) + %V(S

Clearly, V& # 0 in general, since § depends on z, which in turn depends on p.
Thus we have the interesting situation that V(At) # 0 when % # 0; that is, the

V(AL) =

computational equivalent of time, At, will have a nonzero derivative with respect
to the parameter p. Viewed from an analytical perspective, this is nonsense — the
values of time and the parameter are not related. From a computational perspective
however, it does make sense — depending on the value of the parameter, we may
choose a different time discretization. Thus, what we really compute as the final
value z7(p) is

rr(p) = 2(t(P), P)|ep)=1

(note the dependence of t on p). Thus, we obtain

ox ox
V&ier = — - Vii— —
Ti=T atl, . t=T t ap t:T,
and with Eq. (3)
Ox
Vai—r = f(xr,p,T) - V=t + B .
Pli=r

Note that Va and Vit will have been computed by the AD-generated derivative
code. We observe the following:

i. Depending on how the time discretization was chosen, we will obtain different
values for Vi;—r and thus for Va;—7. Most certainly, we will not obtain

g—z 7 which is the result desired by most users.

ii. If At would had been zero at every step, we would have Vt,—r = 0 and thus
Vai—r = g—i - as desired by the user. By default, this happens in methods
using a fixed step size. This case is also discussed by Sandu et al.'®

iii. Independent of how the time discretization was chosen, we can recover the
desired solution as

ox

a_p - = Vai—r — f(l"TaI% T) - Vi—r. (4)

These issues are discussed in more detail by Eberhard and Bischof!”.

Note that approaches (ii) and (iii) are really geared toward the library developer
and the sophisticated AD user, respectively. When an integrator code is written, it
is probably feasible to indicate the places where the next time step is assigned and
to indicate that an AD tool should treat this statement as constant with respect to
differentiation, resulting in the assignment of a zero gradient. Current AD tools do
not have such facilities built-in yet, but will so soon. At any rate, unless the devel-
oper of the integrator provides this information, the considerable sophistication of
these codes makes it difficult for others to extract this information from the code.

While one might take the attitude that this was not an issue, given the “fix”
(iii), this is not really the case. Even when % is well behaved, Vt and Vz can
become very large and can overflow. Furthermore, the user of an AD tool may
well be unaware of these issues, or may not be able to localize the problem since
the integrator may be buried under other layers of software. However, as shown
by Eberhard and Bischof'?, if the final time is prescribed, we are likely to obtain

10

Vti—r = 0, and everything works out; we suspect that this situation has happened
in quite a few AD applications.

We note that while (i) and (iii) will result in the right derivatives g—i, there
is no guarantee that the derivatives will be obtained at the same accuracy as the
solution x, since the guard of the if-statement governing acceptance or rejection of
a step will not be augmented by AD, and thus still will be governed only by the
behavior of . Thus, the derivatives obtained by Eq. (4) will be consistent, but
they may not be as accurate as those obtained by solving the sensitivity equation

. _of L 0f
Tp = =——xp + =,

P9z Op
where z, = %, alongside the original differential equation Eq. (3). It is easy to
add the norm of V§ to the guard for step size control, but an AD tool cannot
be expected to do so without user guidance. Similar issues also arise in the con-
text of automatic differentiation of iterative solvers for nonlinear equations and are

discussed by Griewank et al.'.

5 Concluding Remarks

This note was meant to give a brief introduction to automatic differentiation. We
briefly discussed the advantages of this powerful technique in contrast to the better-
known approaches of numerical, analytic, and symbolic differentiation. Broadly
speaking, automatic differentiation saves work in comparison with handcoding
of analytic derivatives and, by computing accurate derivatives, avoids the hassle
caused by inaccurate numerical differentiation. We reviewed the forward and re-
verse modes of automatic differentiation, gave some background on design issues of
automatic differentiation tools, and discussed some subtle issues involved in using
these tools.

Even though automatic differentiation tools are still in their infancy, under
a wide range of circumstances they already can compute derivatives faster than
divided difference approximations'!. Furthermore, there are examples where the
availability of fully accurate derivatives was essential for numerical robustness and
convergence!'81920 Another advantage of automatic differentiation tools that we
did not discuss in this note is their ability to provide, in a fashion that is transparent
to the user, information about the zero/nonzero structure of derivative matrices.?!
This information is required to solve linear systems involving the Jacobian, and the
automatic detection of the sparsity pattern avoids the error-prone task of having the
user specify the sparsity pattern. This feature is provided in ADIFOR and ADIC
through the SparsLinC library and is used, for example, in the NEOS (Network-
enabled Optimization Server) problem-solving environment??, which is accessible
at http://www-neos.mcs.anl.gov/.

The emergence of robust automatic differentiation tools applicable to
functions defined by computer programs in general-purpose computer lan-
guages such as Fortran 77, Fortran 90, C, and C++ 1is putting these
tools within the reach of many computational practitioners in any field
requiring derivatives, including quantum chemistry. The web site at

11

http://www.sc.rwth-aachen.de/Research/AD/subject.html gives a short de-
scription of some available automatic differentiation tools and provides pointers for
obtaining these tools.

Acknowledgments

This work was completed while the second author was visiting the Mathematics
and Computer Science Division, Argonne National Laboratory, supported by the
Mathematical, Information, and Computational Sciences Division subprogram of
the Office of Advanced Scientific Computing Research, U.S. Department of Energy,
under Contract W-31-109-Eng-38.

References

1.

10.

11.

12.

13.

14.

J. Gauss, in Modern Methods and Algorithms of Quantum Chemistry, edited
by J. Grotendorst, (John von Neumann Institute for Computing, Jiilich, Ger-
many, 2000).

. M. Berz, C. Bischof, G. Corliss, and A. Griewank, Computational Differenti-

ation: Techniques, Applications, and Tools (STAM, Philadelphia, 1996).

. A. Griewank and G. Corliss, Automatic Differentiation of Algorithms (STAM,

Philadelphia, 1991).

. R. Ahlrichs, M. Bar, M. Héaser, H. Horn, and C. Kolmel, Chemical Physics

Letters 162, 165 (1989).

. A. Griewank, in Mathematical Programming: Recent Developments and Ap-

plications, pages 83-108 (Amsterdam, 1989, Kluwer Academic Publishers).

. L. B. Rall, Automatic Differentiation: Techniques and Applications, volume

120 of Lecture Notes in Computer Science (Springer Verlag, Berlin, 1981).
A. Griewank, Fwvaluating Derivatives: Principles and Techniques of Algorith-
mic Differentiation (SIAM, Philadelphia, to appear).

C. Bischof, A. Carle, P. Hovland, P. Khademi, and A. Mauer, ADIFOR 2.0
user’s guide (Revision D), Technical Memorandum ANL/MCS-TM-192, Math-
ematics and Computer Science Division, Argonne National Laboratory, 1998
(also CRPC Technical Report CRPC-95516-S).

. A. Griewank, D. Juedes, and J. Utke, ACM Transactions on Mathematical

Software 22, 131 (1996).

C. Bischof, A. Carle, G. Corliss, A. Griewank, and P. Hovland, Scientific
Programming 1, 11 (1992).

C. Bischof, A. Carle, P. Khademi, and A. Mauer, IEEE Computational Science
& Engineering 3, 18 (1996).

C. Bischof, L. Roh, and A. Mauer, Software—Practice and Experience 27, 1427
(1997).

H. Fischer, in Automatic Differentiation of Algorithms: Theory, Implementa-
tion, and Application, edited by A. Griewank and G. F. Corliss, pages 43-50
(SIAM, Philadelphia, Penn., 1991).

A. Griewank, C. Bischof, G. Corliss, A. Carle, and K. Williamson, Optimiza-
tion Methods and Software 2, 321 (1993).

12

15

16.

17.
18.

19.

20.

21.

22.

. F. Clark, Optimization and Nonsmooth Analysis (John Wiley and Sons, New
York, 1983).

A. Sandu, G. R. Carmichael, and F. A. Potra, Atmospheric Environment 31,
475 (1997).

P. Eberhard and C. Bischof, Mathematics of Computation 68, 717 (1999).
P. Hovland, C. Bischof, D. Spiegelman, and M. Casella, SIAM Journal on
Scientific Computing 18, 1056 (1997).

P. Eberhard, in ICIAM/GAMM 95: Issue 3: Applied Stochastics and Opti-
maization, edited by O. Mahrenholtz, K. Marti, and R. Mennicken, pages 40-43
(1996), Special Issue of Zeitschrift fiir Angewandte Mathematik und Mechanik
(ZAMM).

A. Tbsais and V. Ajjarapu, IEEE Transactions on Power Systems 12, 592
(1997).

C. Bischof, P. Khademi, A. Bouaricha, and A. Carle, Optimization Methods
and Software 7, 1 (1996).

J. Czyzyk, M. P. Mesnier, and J. J. Moré, IEEE Computational Science and
Engineering 5, 68 (1998).

13

