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Experiments and theories have shown that nematic fluids rdagtanhomogeneous steady
states under shear flow. Here we reproduce and study suel statnonequilibrium molec-
ular dynamics simulations of systems of soft repulsivgpsdlids. Different situations where
a nematic phase coexists with a paranematic phase are ednim geometries that impose
constant stress on the whole system, we observe shear gandin separation into two phases
with different local strain rates.

1 Introduction

According to common wisdom, matter at room temperature tiseeisolid, liquid, or
gaseous. However, this is not generally true. Certain riaddéer— often “complex flu-
ids” made of large, organic molecules — assume intermediatetures that combine
properties of solids and liquids. For example, systems isadiropic, cigar-shaped or rod-
like molecules may exhibit a “nematic” phase, where the ks have no translational
order, but are still aligned along one preferential dictithe director. Because of its
intermediate nature, this state of matter is called liqgrigstalline or a mesophase, and
the molecules mesogens, or more specifically nematogegsid-crystalline materials in
which phase transitions between different states are gnatitrolled by the temperature
are classified as thermotropic liquid crystals. In solutiohnematogens, mesophase tran-
sitions may also be driven by the concentration of the negeats. Such liquid crystals
are called lyotropic. Liquid crystals have many technatagjapplications especially in
electro-optics; most well-known to the large public are diaplays.

Complex fluids often show unusual and interesting behavideuflow. Typical exper-
imental setups designed to study such phenomena put theritaid state of steady shear
flow by applying external shear stress. Prominent exampéetha Couette cell, where flu-
ids are confined between two concentrical cylinders movirdjfeerent velocities, or the
Poiseuille rheometer, where the fluid is forced to flow thtoagapillary tube. The stream-
ing velocity field breaks the isotropy of space in the fluidtjas the director field breaks
the symmetry in a nematic liquid crystal. When a nematicitiqgrystal is sheared, one
can thus anticipate interesting effects from the interglithese two symmetry breaking
fields.
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Shear flow influences the order of liquid crystals at the mdbirdevel, and therefore
modifies macroscopic quantities like the viscosity (shkamting or thickening). It may
cause flow-controlled transitions between states thag¢diff their molecular alignment
(shear banding). The behavior of the fluid can be describedrimynequilibrium phase di-
agram spanned by the density, the temperature and the sitaiar the shear stress. Such
a phase diagram exhibits a nematic-isotropic coexistezgiem that is believed to culmi-
nate in a critical point at a high enough strain rate, in agylwith the equilibrium phase
diagram of a liquid-gas system or of two immiscible flfids In contrast to equilibrium
phase diagrams, however, the nonequilibrium phase diagraimt uniquely defined, but
depends on the details of the experimental setup.

In the coexistence region, the nematic and isotropic phageseparated by an inter-
face that again breaks the isotropy of space and influeneendtecular orientation in the
nematic phase. This phenomenon is known as surface anghétihsurfaces impose or
at least favor one particular tilt angle between the dineatal the surface normal. Specifi-
cally, nematic/isotropic interfaces often favor planatctaoring, i. e., the molecules tend to
lie flat on the surface.

Other important properties of fluid-fluid interfaces are thierfacial tension and the
presence of small undulations, also called capillary wavesaddition to affecting the
molecular order, shear introduces a new time scale intouf 1l/4, wherey is the strain
rate. As a consequence, long-lived fluctuations and largetstral relaxation times with a
lifetime longer thanl /4 should be destroyed or at least reduced in sheared systems. O
would thus expect that shear affects the long-wavelengililaey waves, which are very
long-lived, and possibly modifies the closely related dffecnterfacial tension.

Nematic fluids in shear flow have been studied for the last 2Bsyexperimentally,
theoretically, and by computer simulation. Literature migwvs can be found in Refs. 2
and 3. Experiments include rheological, optical (e.g. aaloums light scattering) and spec-
troscopical (e.g. nuclear magnetic resonance) technidtiesoretical studies were based
on generalizations of the Navier-Stokes equations, i.aipled hydrodynamic equations
of motion for the nematic order tens@ and the streaming velocity of the fluid, that
depend on the strain rate(or its generalisation, the velocity gradient tensor),dbeasity
p, the temperaturg’, and rotational and shear viscositigsandn,. Such equations have
been used to calculate nonequilibrium phase diagrams émtbtropié and lyotropicé
liquid crystals in various experimental geometries.

In the project presented here, we have performed a compuotetagion of such a sys-
tem. In contrast to the theory mentioned above, that de=ttie system as a continuum,
we adopt a particle-based approach and study a system p$atls in shear flow. To
our knowledge, this is the first multiphase nonequilibriumudation of a liquid crystal:
previous simulations we are aware of have been aimed at dimgpuscosities and other
transport coefficients of homogeneous mesophases. Siondaif inhomogeneous liquid
crystals under shear are particularly challenging, siheg tequire non-standard software
and are computationnally very expensive.

Our paper is organized as follows. In the next section, wendefie model and discuss
some technical details. Results are presented in sectidrirgally, we summarize and
conclude in section 4.
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2 Mode and Simulation M ethod

We model molecules in a classical mechanics framework asegodilsive ellipsoids with
a length to width ratio of 15. This particular choice pernatslirect comparison with
previous equilibrium studies of the surface tenéiand capillary wave fluctuatiosf the
nematic-isotropic interface in the same system. Each ratdes fully determined by the
position of its center of massand by the unit vecto@ that identifies its long axis. The
intermolecular potential is

U= Zi<j 460(5;»12 — S;jS) + €0, Si < 21/6
0, otherwise ’

1)

wheres;; = (r;; — o (%5, 0, 0j) + 00) /00 is a scaled and shifted distance witlapprox-
imating® the contact distance of two ellipsoids. All data in this page given in reduced
units defined by the energy and length parameigiand o, the particle’s mass and the
Boltzmann constant. We perform a Molecular Dynamics (MBjation, i. e., the molec-
ular positionsr; and the orientationd; are propagated according to Newton’s equations
of motion, more specifically using the symplectic integyatalgorithm RTTLE’.

As usually done in this type of simulations, the moleculesamtained in a cuboidal
box with periodic boundary conditions. This means that the iis surrounded by mirror
images of itself so as to avoid surface effects. Shear flowbeaenforced by moving
the boundaries at constant sp&ebh other words, the mirror images along thexis are
shifted at each time step with respect to the box by an amdlpi\t, whereL, is the
length of the box along theg direction. The energy constantly pumped into the system by
this means must be dissipated at the same rate it comes iatsm skeady nonequilibrium
state can be reached. We achieved this by coupling the mateeglocities to a Nosé-
Hoover extended Lagrangian thermo%t&ve took care that it acts only on the disordered,
thermal part of the velocities, i. e., the velocities minues streaming velocity of the fluid.

It is important that the thermostat is unbiased by the vetqmiofile when the latter is not
uniform due to the presence of an interface, as in our case.

Given the intermolecular potential function and the dgns#mperature and strain rate
parameters, MD allows to measure the streaming velocity,fibe order tensor, the stress
tensor, and the viscosities. The order tensor is given by

N
1 3 1
= — - U y U ; _I 2
Q N;(Quz@)uz 2), (2)
wherel is the3 x 3 unity matrix. The nematic order parameteyis the highest eigenvalue
of Q, and the directofi is the eigenvector corresponding/. The stress tensor (equal to
the negative pressure tendd) is given by

N N
1
U:*P:*V ;mivi®vi+ Z ri; @ fi; | . 3)

i<j=1
The shear viscosity is defined by

o ov
ne = —2, where 7 a

ol - ory

(4)
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is the locally observed strain rate, whitev,, /Ar, = Awv, /L, is the globally imposed
strain rate.

At this point, a few remarks regarding the choice of the madelin order. On prin-
ciple, one could of course implement a more realistic mdecpotential, that contains
intramolecular degrees of freedom or even atomic details Would permit quantitative
comparisons with experiments. Unfortunately, it woulasbalrease the already high com-
putational cost to a currently unbearable extent. Theegfee have restricted ourselves
to studying a simple, computationally cheap model systeamgarisons are thus mainly
with theories. This reflects the peculiarity of simulatiptigat have an intermediate posi-
tion between experiments and theories.

In usual bulk simulations of ordinary liquids with periodioundary conditions, good
results can be obtained with systems of only a few hundrec&cotds. Mesophases re-
quire larger system sizes, due to the long range orderingtamngresence of collective
properties. Nevertherless, thousand molecules will diesufficient. In order to observe
a phase separation, however, one must use elongated sonddakes that contain several
thousand molecules, or cubic boxes with even more partidles smallest systems stud-
ied in this work contained 7200 particles in a box with sidéosa1:8:1. If one wishes to
study interface properties like capillary wave fluctuasigthe cross-section of the interface
must be very large, and the necessary number of particlesages by yet another order
of magnitude, totalling about0®. Our largest system contained 115200 particles. It was
initially set up by replicating the system witN = 7200 particles four times along the
2 axis and four times along theaxis. Runs of up to a few million MD time steps were
necessary to equilibrate the system and gather enougstistati

The need for a massively parallel computer is thus evideat.MD program exploits
parallelism by domain decomposition, i. e., it splits thegiation box into smaller do-
mains that are each processed by a different processor. r@akest neighbor domains
exchange particles with each other. The speed-up of thegmobas been tested on the
Cray T3E. It scales well on up to as many nodes as were avai(&PR), though for pro-
duction only one quarter (128) of the maximum was used. Tinenconication paradigm
is MPI.

3 Results

Following a common convention, we label the flow (or velogayisz, the flow (or veloc-
ity) gradient axisy, and the third axis, called vorticity axis,(see Fig. 1). In equilibrium
(i. e., with normal periodic boundary conditions), a biphaystem consists of a slab of
one phase, that is sandwiched between two regions of the pttzse. The slab is in-
evitably perpendicular to one of the box sides, usually tregést one. In other words,
there are always two parallel interfaces, that lie eithehéwy plane, therz plane, or the
yz plane. When shear is applied (i. e., with moving boundaryd@ams), only the two
first cases are stable.

When the interface lies in the: plane, the two phases are subject to the same common
shear stress,,, but may have different strain ratés when the interface lies in they
plane, the two phases have the same strain rate, but mayenqedifferent shear stresses.
In a Couette rheometer, where the vorticity axis correspdndhe spinning axis of the
cylinders, the two phases form concentric rings in the comstieess geometry and annular
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Figure 1. Reference system defined by the velocity prafiland the two possible positions of an interface:
common stress (left) and common strain (right) geometries.

bands in the common strain geometry.

In a system of soft ellipsoids such as the one consideredthermterface aligns the di-
rector in the direction parallel to the surf4¢planar anchoring). Thus the nematic director
i lies on the interface plane. At common stress, two diffelecally stable arrangements
of the director with respect to the flow directianare predicted by theory and observed
in experiments, depending on how the system was preparealigddflow-aligning) and
perpendicular (log-rolling). At common strain, only thevil@ligning case is stable.

We have simulated a system with = 115200 particles in the nematic-isotropic co-
existence region in the common stress, flow-aligning gepmé&he average density was
p = 0.017, the temperaturé = 1.0, and the strain rate$ ranged from10—° to 10~
In all cases, the initial configuration was an equilibratetbzshear system containing two
interfaces. A snapshot of the= 102 system is shown in Fig. 2.

At low strain rates, the density and the order parametertta&elearly distinct values
in the different phases (Fig. 3). The order parameter ingbtapic phase is almost zero.
In fact, the remaining small value does not differ substdiytfrom that calculated at zero
shear in the isotropic phase. Nevertheless, it should kedribat flow is bound to induce a
tiny amount of order in the disordered phase, since it brédak#sotropy of space. Strictly
speaking, the “isotropic” phase should be more properlggdaaranematic.

At higher strain ratesi(= 10~2 and10~!), the two phases merge and the interfaces
disappear. This can be seen by monitoring the order parametethe density of the
system along thg axis. At the highest strain rate= 10~!, the order parameter profile
shows quite pronounced differences in the initial configarathat level off rapidly within
a few tens of thousand MD steps (Fig. 4). The density profileice more slowly. A
similar process takes placesat= 10~2, though on a longer time scale.
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Figure 2. Top: Snapshot of a common stress, flow-aligning system wite 10~3 (115200 particles). The
reference system and interface geometry are as in the I€figofl. Molecules are coloured according to their
orientation in order to show the difference between the tifferéntly ordered phase&ottom left: Detail of the
interface region seen from the vorticity)(axis. The molecules in the upper, nematic phase are claligiyed
from left to right along the flow axisx(). Bottom right: Detail of the interface region seen from the flay) éxis.
Though the lower phase shows some amount of flow-induced, dhdeview alonge is more similar to the view

alongz than for the upper phase.
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Figure 3. Order parameter (left) and density (right) preffler common stress, flow-aligning systems at different
strain rates, after more than 100,000 MD time steps. Thednidér, high density region corresponds to a nematic
phase, the other to an isotropic (or paranematic) phase.ightdtrain rates, the two phases merge; the still
incomplete merging process is faster for the order parartiede the density, and for the higher strain rate.

density

0018
0.016
0014

Figure 4. Approach to equilibrium of the order parameteit)(End density (right) profiles in the common stress,
flow-aligning system withy = 0.1. The order parameter reacts faster than the density to diedysgrain.

Having found that the interfaces are unstable at strairs @t¢ = 10~2 and beyond,
we chose to focus on the strain rate= 1072 in most further studies, and accumulated
about 2 million MD steps in the common stress, flow-aligniegietry. We set up another
system in the common stress, log-rolling geometry by nogathe initial configuration of
the common stress, flow-aligning casedy around they axis, such that the director of
the nematic phase was normal to the flow axis. We ran thisreyfie 1.7 million steps,
and so far it has remained stable. Order parameter and yi@nsftles are identical with
the flow-aligning case, see Fig. 5. A third system of agdin= 115200 particles was set
up by rotating the same initial configuration By° around ther axis, such that it can be
sheared at common strain. The interface lies inith@lane, as shown in the right part of
Fig. 1. We have not yet accumulated enough data on this systpresent them here.

At common stress, nonequilibrium interfaces exhibit arotimportant feature: the
local strain rate in the two coexisting phases is differ&his is demonstrated in Fig. 6: in
the more ordered phase the slope of the velocity profile isdrig. e. the shear viscosity is
lower. Intuitively, one can argue that the more aligned tagigles are, the less resistance
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Figure 5. Common stress profiles for the flow-aligning andriting systems withy = 0.001: order parameter
(left) and density (right).

they oppose to the flow. This is observed both for alignmerdlf| and perpendicular to
the flow direction, though the phenomenon is slightly moresgrced in the flow-aligning
case, as one might expect. Shearing induces order, andredieres the shear viscosity;
the system is said to “shear thin”. This is consistent withékperience that systems with
Lennard-Jones and similar potentials tend to shear thimsttit ellipsoid potential is an
anisotropic variant of the purely repulsive Lennard-Jopetential. However, there are
also systems that shear thicken.

In addition to these studies, we have also attempted tosasse® systematically the
stability of the interface at different strain rates. Tosteind, we have simulated smaller
systems ofN = 7200 particles in a simulation box with side ratios 1:8:1 at straites
between 0.002 and 0.009 in increments of 0.001, for all tiyemmetries. We found that
the interface remains stable up to an average strain rate€d060 Interestingly, the den-
sities of the two coexisting phases do almost not dependentthin rate at all. Beyond
4 = 0.006, the coexistence region disappears abruptly and the twsegshaerge in one.
Combining the results from linear fits to the density and thlesity profiles, one can con-
struct nonequilibrium phase diagrams. The result for the-fitigning geometry is shown
in Fig. 7.

04

02

strain rate = 0.1 ——

strain rate = 0.01 -------

strain rate = 0.001 - 4 p
strain rate = 0,0001 > oal
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v_x/(gamma*L_y), average over 100000 steps
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Figure 6. Shear banding in common stress velocity profilesy-8ligning, several strain rates (left); flow-
aligning and log-rolling;y = 0.001 (right).
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Figure 7. Phase diagram sectiorifat= 1 of the common stress, flow-aligning system. P = paranemegjion,
N = nematic region. The sloped straight “tie” lines connamisting phases.

4 Conclusions and Outlook

To our knowledge, we have performed the first molecular sith study of nonequilib-
rium interfaces under shear flow in liquid crystals. We hamoduced the inhomogeneous
steady states predicted theoretically by Olmsted@t, dbr the three relevant geometries:
flow-aligning nematic-paranematic in the constant stregsthe constant strain geome-
tries, and flow-aligning nematic-paranematic in the cams$&ress geometry. Most note-
ably, we observed shear banding in the common stress georattrertain densities, the
system separates into two phases, that respond with diffsnein rates to the same con-
stant applied stress. The more ordered phase has the highiarrate, i. e., we observe
shear thinning upon ordering. Interestingly, this sheamiing occurs for both the flow-
aligning and the log-rolling geometry, i. e., regardlessvhether the director in the more
ordered phase points along the flow or not. However, the te$fEams to be a little stronger
in the flow-aligning case, where the director and the vejolitld are parallel. Further-
more, we have constructed a phase diagram of the coexigtgioa in the common stress
geometry by analyzing the discontinuities of the order peater, the density, and the local
strain rate as a function of the total imposed strain.

In the present paper, we have presented only some preliyniesults gathered in this
study. A more detailed analysis will be presented elsewAeaéong with the results for
the common strain geometry. In particular, we will study ki@xiality, the stress tensor,
the interface tension, and the capillary wave fluctuatioeationed in the introduction. In
future studies, attention shall also be given to transieenpmena such as the destruction
of the interfaces at high strain rates, the flow-alignmenhefdirector when shear is ap-
plied to a system oriented in a direction different from theection of the flow, and the
destruction of an interface that is set up in an unstable géymwith the flow pointing
normal to the interface. Due to the short-lived nature o$¢htime-dependent phenomena,
however, it is likely that it will not be possible to performgaiantitative analysis on the
same level as for the steady states.
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