000153151 001__ 153151
000153151 005__ 20250129092447.0
000153151 0247_ $$2doi$$a10.1088/0957-0233/25/5/055801
000153151 0247_ $$2ISSN$$a1361-6501
000153151 0247_ $$2ISSN$$a0957-0233
000153151 0247_ $$2wos$$aWOS:000334352000041
000153151 037__ $$aFZJ-2014-02814
000153151 041__ $$aEnglish
000153151 082__ $$a600
000153151 1001_ $$0P:(DE-Juel1)140421$$aMester, A.$$b0$$eCorresponding Author$$ufzj
000153151 245__ $$aDevelopment and drift-analysis of a modular electromagnetic induction system for shallow ground conductivity measurements
000153151 260__ $$aBristol$$bIOP Publ.$$c2014
000153151 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1399375803_3029
000153151 3367_ $$2DataCite$$aOutput Types/Journal article
000153151 3367_ $$00$$2EndNote$$aJournal Article
000153151 3367_ $$2BibTeX$$aARTICLE
000153151 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000153151 3367_ $$2DRIVER$$aarticle
000153151 520__ $$aElectromagnetic induction (EMI) is used for fast near surface mapping of the electrical conductivity (EC) for a wide range of geophysical applications. Recently, enhanced methods were developed to measure depth-dependent EC by inverting quantitative multi-configuration EMI data, which increases the demand for a suitable multi-channel EMI measurement system. We have designed a novel EMI system that enables the use of modular transmitter/receiver (TX/RX) units, which are connected to a central measurement system and are optimized for flexible setups with coil separations of up to 1.0 m. Each TX/RX-unit contains a coil, which is specifically adjusted for transmitting or receiving magnetic fields. All units enable impedance measurements at the coils, which are used to simulate its electrical circuit and analyze temperature-induced drift effects. A laboratory drift analysis at 8 kHz showed that 88% of the drift in the measured data is due to the change in the electrical transmitter coil resistance. The remaining 12% is due to changes in the transmitter coil inductance and capacitance, the receiver impedance and drifts in the amplification circuit. A measurement under field conditions proved that the new EMI system is able to detect a water-filled swimming pool with 50 mS m−1, using a coil separation of 0.3 m. In addition, the system allows in-field ambient noise spectra measurements in order to select optimal low-noise measurement frequencies
000153151 536__ $$0G:(DE-HGF)POF2-246$$a246 - Modelling and Monitoring Terrestrial Systems: Methods and Technologies (POF2-246)$$cPOF2-246$$fPOF II$$x0
000153151 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000153151 7001_ $$0P:(DE-Juel1)133962$$aZimmermann, Egon$$b1
000153151 7001_ $$0P:(DE-Juel1)129561$$aVan der Kruk, J.$$b2$$ufzj
000153151 7001_ $$0P:(DE-Juel1)129549$$aVereecken, H.$$b3$$ufzj
000153151 7001_ $$0P:(DE-Juel1)142562$$aVan Waasen, S.$$b4$$ufzj
000153151 773__ $$0PERI:(DE-600)1362523-8$$a10.1088/0957-0233/25/5/055801$$gVol. 25, no. 5, p. 055801 -$$n5$$p055801$$tMeasurement science and technology$$v25$$x1361-6501$$y2014
000153151 8564_ $$uhttps://juser.fz-juelich.de/record/153151/files/FZJ-2014-02814.pdf$$yRestricted$$zPublished final document.
000153151 909CO $$ooai:juser.fz-juelich.de:153151$$pVDB:Earth_Environment$$pVDB
000153151 9141_ $$y2014
000153151 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000153151 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000153151 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000153151 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000153151 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000153151 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000153151 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000153151 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000153151 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000153151 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000153151 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000153151 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133962$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000153151 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133962$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000153151 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129561$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000153151 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129549$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000153151 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142562$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000153151 9132_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$aDE-HGF$$bMarine, Küsten- und Polare Systeme$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000153151 9131_ $$0G:(DE-HGF)POF2-246$$1G:(DE-HGF)POF2-240$$2G:(DE-HGF)POF2-200$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vModelling and Monitoring Terrestrial Systems: Methods and Technologies$$x0
000153151 920__ $$lyes
000153151 9201_ $$0I:(DE-Juel1)ZEA-2-20090406$$kZEA-2$$lZentralinstitut für Elektronik$$x0
000153151 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x1
000153151 980__ $$ajournal
000153151 980__ $$aVDB
000153151 980__ $$aI:(DE-Juel1)ZEA-2-20090406
000153151 980__ $$aI:(DE-Juel1)IBG-3-20101118
000153151 980__ $$aUNRESTRICTED
000153151 981__ $$aI:(DE-Juel1)PGI-4-20110106
000153151 981__ $$aI:(DE-Juel1)IBG-3-20101118