000153163 001__ 153163
000153163 005__ 20240708132751.0
000153163 037__ $$aFZJ-2014-02823
000153163 1001_ $$0P:(DE-Juel1)159367$$aReppert, Thorsten$$b0$$eCorresponding Author$$ufzj
000153163 1112_ $$aThe 6th German Symposium Kraftwerk Batterie$$cMuenster$$d2014-03-25 - 2014-03-26$$wGermany
000153163 245__ $$aDevelopment of Li7La3Zr2O12- slurries forLithium ion battery functional components
000153163 260__ $$c2014
000153163 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1397632841_19280$$xOther
000153163 3367_ $$033$$2EndNote$$aConference Paper
000153163 3367_ $$2DataCite$$aOutput Types/Conference Poster
000153163 3367_ $$2DRIVER$$aconferenceObject
000153163 3367_ $$2ORCID$$aCONFERENCE_POSTER
000153163 3367_ $$2BibTeX$$aINPROCEEDINGS
000153163 520__ $$aIn the last decades, electricity generation from renewable energy sources has gained importance in our society. With the “Energiewende” there are promising changes in energy supply already; however there is a major demand for developing new energy storage systems. Solid state lithium ion batteries have, in comparison to common LIBs, better safety properties due to the solid electrolyte. Ceramic oxide materials as solid lithium ion conductors have the advantage of inertness against atmosphere and are easier in fabrication. Li7La3Zr2O12 (LLZ) is a promising oxide material for electrolyte layers in all solid state batteries (ASBs). Its cubic phase shows one of the highest total Li+ ion conductivities (σ≈5∙(10)^(-4) S/cm). In Addition, dopants like Al, Ta and Y can be used to improve the garnets properties. However, to fabricate a working ASB, the materials needs to be processed into functional electrolyte layers. Different powder synthesis methods have been investigated. These powders have then been used for dispersion studies and different LLZ-slurries for further processing trials.
000153163 536__ $$0G:(DE-HGF)POF2-123$$a123 - Fuel Cells (POF2-123)$$cPOF2-123$$fPOF II$$x0
000153163 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
000153163 7001_ $$0P:(DE-Juel1)156244$$aTsai, Chih-Long$$b1$$ufzj
000153163 7001_ $$0P:(DE-Juel1)156292$$aHammer, Eva-Maria$$b2$$ufzj
000153163 7001_ $$0P:(DE-Juel1)145623$$aFinsterbusch, Martin$$b3
000153163 7001_ $$0P:(DE-Juel1)129580$$aUhlenbruck, Sven$$b4$$ufzj
000153163 7001_ $$0P:(DE-Juel1)129591$$aBram, Martin$$b5$$ufzj
000153163 7001_ $$0P:(DE-Juel1)129594$$aBuchkremer, Hans Peter$$b6$$ufzj
000153163 773__ $$y2014
000153163 909CO $$ooai:juser.fz-juelich.de:153163$$pVDB
000153163 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159367$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000153163 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156244$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000153163 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156292$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000153163 9101_ $$0I:(DE-Juel1)VS-II-20090406$$6P:(DE-Juel1)145623$$aWissenschaftlicher Geschäftsbereich II$$b3$$kVS-II
000153163 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129580$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000153163 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129591$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000153163 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129594$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000153163 9132_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000153163 9131_ $$0G:(DE-HGF)POF2-123$$1G:(DE-HGF)POF2-120$$2G:(DE-HGF)POF2-100$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lRationelle Energieumwandlung und -nutzung$$vFuel Cells$$x0
000153163 9141_ $$y2014
000153163 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000153163 980__ $$aposter
000153163 980__ $$aVDB
000153163 980__ $$aI:(DE-Juel1)IEK-1-20101013
000153163 980__ $$aUNRESTRICTED
000153163 981__ $$aI:(DE-Juel1)IMD-2-20101013