000153209 001__ 153209
000153209 005__ 20240711092301.0
000153209 0247_ $$2doi$$a10.1002/fuce.201300154
000153209 0247_ $$2WOS$$aWOS:000328336300014
000153209 037__ $$aFZJ-2014-02856
000153209 082__ $$a620
000153209 1001_ $$0P:(DE-Juel1)129755$$aMalzbender, Jürgen$$b0$$eCorresponding Author$$ufzj
000153209 245__ $$aResidual Stress Assessment for This 8YSZ Electrolytes Using Focused Ion Beam Milling and Digital Image Correlation
000153209 260__ $$aWeinheim$$bWiley-VCH$$c2013
000153209 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1398156078_19370
000153209 3367_ $$2DataCite$$aOutput Types/Journal article
000153209 3367_ $$00$$2EndNote$$aJournal Article
000153209 3367_ $$2BibTeX$$aARTICLE
000153209 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000153209 3367_ $$2DRIVER$$aarticle
000153209 520__ $$aWith respect to solid oxide fuel cell power density it has been verified that 1–2 μm thick 8YSZ electrolytes have significant advantages, offering the potential to operate stacks at temperatures of 600 °C. However, reliability of the component depends on integrity and hence residual stress state. In this work, an advanced method is used to determine the electrolyte residual stress locally using stress relaxation tests by a combination of focused ion beam milling and digital image correlation.
000153209 536__ $$0G:(DE-HGF)POF2-123$$a123 - Fuel Cells (POF2-123)$$cPOF2-123$$fPOF II$$x0
000153209 7001_ $$0P:(DE-Juel1)129669$$aVan Gestel, Tim$$b1$$ufzj
000153209 773__ $$0PERI:(DE-600)2054621-X$$a10.1002/fuce.201300154$$n6$$p1076-1079$$tFuel cells$$v13$$x1615-6854$$y2013
000153209 8564_ $$uhttps://juser.fz-juelich.de/record/153209/files/FZJ-2014-02856.pdf$$yRestricted$$zPublished final document.
000153209 909CO $$ooai:juser.fz-juelich.de:153209$$pVDB
000153209 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129755$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000153209 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129669$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000153209 9132_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000153209 9131_ $$0G:(DE-HGF)POF2-123$$1G:(DE-HGF)POF2-120$$2G:(DE-HGF)POF2-100$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lRationelle Energieumwandlung und -nutzung$$vFuel Cells$$x0
000153209 9141_ $$y2013
000153209 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000153209 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000153209 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000153209 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000153209 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000153209 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000153209 915__ $$0StatID:(DE-HGF)1020$$2StatID$$aDBCoverage$$bCurrent Contents - Social and Behavioral Sciences
000153209 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x0
000153209 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x1
000153209 980__ $$ajournal
000153209 980__ $$aVDB
000153209 980__ $$aI:(DE-Juel1)IEK-2-20101013
000153209 980__ $$aI:(DE-Juel1)IEK-1-20101013
000153209 980__ $$aUNRESTRICTED
000153209 981__ $$aI:(DE-Juel1)IMD-1-20101013
000153209 981__ $$aI:(DE-Juel1)IMD-2-20101013
000153209 981__ $$aI:(DE-Juel1)IEK-1-20101013