001     153212
005     20210129213702.0
024 7 _ |a 10.1016/j.memsci.2014.01.021
|2 doi
024 7 _ |a WOS:000331813100014
|2 WOS
037 _ _ |a FZJ-2014-02859
082 _ _ |a 570
100 1 _ |a Pecanac, Goran
|0 P:(DE-Juel1)138890
|b 0
|e Corresponding Author
|u fzj
245 _ _ |a Steady-State Creep of Porous and an Extended Analysis on the Creep of Dense BSCFZ
260 _ _ |a New York, NY [u.a.]
|c 2014
|b Elsevier
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1398156596_19370
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a Based on permeation, which is one of the most important properties for membrane applications, Ba0.5Sr0.5(Co0.8Fe0.2)0.97Zr0.03O3−δ appears to be promising as a membrane/substrate material. Since creep deformation is a critical mechanical aspect for this application, previous studies concentrated on the creep of dense material which revealed a very complex behavior due to the influence of secondary phases. The current study attempts to extend the current knowledge on the influence of secondary phases on creep characteristics for this material. The study also assesses the creep behavior of the necessary porous substrate material which is expected to have a larger impact on the deformation of the composite than the thin dense layer. The creep characterization concentrated on the temperature range from 775 to 950 °C for heating and cooling sequences. While the analysis on the creep behavior of the dense material is significantly extended compared to that reported for the Ba0.5Sr0.5Co0.8Fe0.2O3−δ reference material and verified that it is strongly influenced by the secondary phase at lower temperatures, novel creep investigation of porous material revealed a progressively increasing creep rate with increasing temperature.
536 _ _ |a 122 - Power Plants (POF2-122)
|0 G:(DE-HGF)POF2-122
|c POF2-122
|f POF II
|x 0
700 1 _ |a Kiesel, L.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Malzbender, Jürgen
|0 P:(DE-Juel1)129755
|b 2
|u fzj
773 _ _ |a 10.1016/j.memsci.2014.01.021
|0 PERI:(DE-600)1491419-0
|p 134-138
|t Journal of membrane science
|v 456
|y 2014
|x 1873-3123
856 4 _ |u https://juser.fz-juelich.de/record/153212/files/FZJ-2014-02859.pdf
|z Published final document.
|y Restricted
909 C O |o oai:juser.fz-juelich.de:153212
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)138890
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129755
913 2 _ |a DE-HGF
|b Forschungsbereich Energie
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-111
|2 G:(DE-HGF)POF3-100
|v Efficient and Flexible Power Plants
|x 0
913 1 _ |a DE-HGF
|b Energie
|l Rationelle Energieumwandlung und -nutzung
|1 G:(DE-HGF)POF2-120
|0 G:(DE-HGF)POF2-122
|2 G:(DE-HGF)POF2-100
|v Power Plants
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
914 1 _ |y 2014
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
920 1 _ |0 I:(DE-Juel1)VDB810
|k IEF-2
|l Werkstoffstruktur und Eigenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)VDB810
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21