000153213 001__ 153213 000153213 005__ 20240711092304.0 000153213 0247_ $$2doi$$a10.1016/j.ceramint.2013.12.085 000153213 0247_ $$2WOS$$aWOS:000333488100126 000153213 037__ $$aFZJ-2014-02860 000153213 082__ $$a670 000153213 1001_ $$0P:(DE-Juel1)161504$$aLipinska-Chwalek, Marta$$b0$$eCorresponding Author$$ufzj 000153213 245__ $$aStability aspects of porous Ba0.5Sr0.5Co0.8Fe0.2O3−δ 000153213 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2014 000153213 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1398156840_19369 000153213 3367_ $$2DataCite$$aOutput Types/Journal article 000153213 3367_ $$00$$2EndNote$$aJournal Article 000153213 3367_ $$2BibTeX$$aARTICLE 000153213 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000153213 3367_ $$2DRIVER$$aarticle 000153213 520__ $$aPorous substrates are a prerequisite for advanced oxygen transport membranes. In particular, phase stability and mechanical robustness are of concern for long term performance and reliability. These aspects were investigated for porous Ba0.5Sr0.5Co0.8Fe0.2O3−δ material using annealing experiments along with microstructural investigations, depth-sensitive micro-indentation and ring-on-ring bi-axial bending tests. Annealing studies revealed phase instabilities at elevated temperatures that were also characterized by X-ray diffraction analysis. Elastic modulus and fracture stress were strongly affected by the porosity, whereas their temperature dependency agreed with the behavior of dense material. 000153213 536__ $$0G:(DE-HGF)POF2-122$$a122 - Power Plants (POF2-122)$$cPOF2-122$$fPOF II$$x0 000153213 7001_ $$0P:(DE-Juel1)129660$$aSchulze-Küppers, Falk$$b1$$ufzj 000153213 7001_ $$0P:(DE-Juel1)129755$$aMalzbender, Jürgen$$b2$$ufzj 000153213 773__ $$0PERI:(DE-600)2018052-4$$a10.1016/j.ceramint.2013.12.085$$n5$$p7395 - 7399$$tCeramics international$$v40$$x1873-3956$$y2014 000153213 8564_ $$uhttps://juser.fz-juelich.de/record/153213/files/FZJ-2014-02860.pdf$$yRestricted$$zPublished final document. 000153213 909CO $$ooai:juser.fz-juelich.de:153213$$pVDB 000153213 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161504$$aForschungszentrum Jülich GmbH$$b0$$kFZJ 000153213 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129660$$aForschungszentrum Jülich GmbH$$b1$$kFZJ 000153213 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129755$$aForschungszentrum Jülich GmbH$$b2$$kFZJ 000153213 9132_ $$0G:(DE-HGF)POF3-111$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lEnergieeffizienz, Materialien und Ressourcen$$vEfficient and Flexible Power Plants$$x0 000153213 9131_ $$0G:(DE-HGF)POF2-122$$1G:(DE-HGF)POF2-120$$2G:(DE-HGF)POF2-100$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lRationelle Energieumwandlung und -nutzung$$vPower Plants$$x0 000153213 9141_ $$y2014 000153213 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed 000153213 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR 000153213 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000153213 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000153213 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000153213 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000153213 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000153213 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences 000153213 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000153213 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x0 000153213 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x1 000153213 980__ $$ajournal 000153213 980__ $$aVDB 000153213 980__ $$aI:(DE-Juel1)IEK-2-20101013 000153213 980__ $$aI:(DE-Juel1)IEK-1-20101013 000153213 980__ $$aUNRESTRICTED 000153213 981__ $$aI:(DE-Juel1)IMD-1-20101013 000153213 981__ $$aI:(DE-Juel1)IMD-2-20101013 000153213 981__ $$aI:(DE-Juel1)IEK-1-20101013